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Part I

The Kochen-Specker theorem

1 Mathematical statement

Given a set S of rank 1 projectors, a function v : S → {0, 1} is called a valid
value assignment if


P∈M v(P ) = 1 whenever M ⊆ S is a resolution of the

identity, i.e.


P∈M P = I.
If no valid value assignment exists, we call S a Kochen-Specker (KS) set.

Theorem 1 (Kochen-Specker [1]). Finite KS sets exist in all Hilbert spaces
of dimension greater than 2.

2 Physics interlude

Sets of projectors M with


P∈M P = I represent projective measurements.
We can think of a valid value assignment as pre-determining outcomes for
all of the measurements M ⊆ S, by taking the P ∈ M with v(P ) = 1 to be
the outcome that will occur. The validity condition that


P∈M v(P ) = 1

simply ensures there is exactly one such P , so that we don’t have multiple
outcomes occurring, or none at all. But non-trivial physical assumptions
are baked into the very notion of a value assignment:

1. Outcome determinism: There is a fact about which outcome will occur,
so that the apparent randomness of quantum measurements is purely
due to ignorance of the true value assignment.

2. Measurement non-contextuality: Whether or not an outcome occurs is
determined solely by the projector representing it, and no other infor-
mation (or “context”). In particular, whether it occurs is independent
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of the measurement it appears in, so that we write v(P ) instead of
v(P,M).

To put it another way, the assumption is that the projectors in S represent
objective properties of a system, and a measurement simply reveals which
of some set of mutually exclusive and exhaustive properties holds. [These
assumptions will be discussed more in part II.]

Both assumptions are necessary. Without determinism, non-contextual
probability assignments exist, for example the operational probabilities (given
in quantum theory by the Born rule). Without non-contextuality, one can
assign an outcome to every measurement arbitrarily, since there are no longer
any consistency requirements between measurements.

3 Some useful reformulations

3.1 Higher dimensions are free

Suppose we have found a Kochen-Specker set S in dimension d. We can
easily construction a Kochen-Specker set S′ in dimension d + 1 as follows.
Pick a basis {|0〉 , . . . , |d〉} for the d + 1-dimensional space. The subspace
orthogonal to |0〉 has dimension d, so we can embed S into it as S0. Similarly
for the subspace orthogonal to |1〉 choose an embedding S1. We define
S′ := S0 ∪S1 ∪Mb as those two embeddings along with the basis projectors
Mb := {|0〉 〈0| , . . . , |d〉 〈d|}.

Suppose we have a valid value assignment v′ : S′ → {0, 1}. Since Mb

sums to identity, we either have v′(|0〉 〈0|) = 0 or v′(|1〉 〈1| = 0. Suppose
the first condition holds. If M ⊂ S sums to identity in dimension d, then
corresponding subset M ′ ⊂ S0 of the first embedding, along with |0〉 〈0|, sum
to identity in dimension d+1. Since v′ is valid,


P∈M ′ v′(P )+v′(|0〉 〈0|) = 1.

But v′(|0〉 〈0|) = 0 so we have


P∈M ′ v′(P ) = 1. Hence we obtain a valid
value assignment v : S → {0, 1} by letting v(P ) equal v′(P ′) where P ′ ∈ S0

is the embedding of P .
If v′(|1〉 〈1|) = 0 we can run the same argument on the second embedding.

Either way, we end up with a valid value assignment on S. So if no such
assignment exists, we have a contradiction and so the value assignment to
S′ we have been supposing cannot exist.

The upshot is that the Kochen-Specker theorem can be proven simply
by exhibiting a KS set in dimension 3.
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3.2 Can use observables

Suppose we have a set of observables (Hermitian operators) O. Some subsets
of the observables will commute and hence have basis in which they are
jointly diagonalisable. Let S consist projectors onto the elements of all such
bases. Then a valid value assignment v : S → {0, 1} induces an assignment
v : O → R where f(A,B, . . . ) = 0 for some commuting A,B, . . . ∈ O then
f(v(A), v(B), . . . ) = 0. Important implications of this property include:

1. By taking f to be the characteristic polynomial of A, we see that v(A)
is an eigenvalue of A for all A ∈ O.

2. By taking f to be f(A,B,C) = A+B−C we see that if A,B,A+B ∈ O
and A commutes with B then v(A+B) = v(A) + v(B).

3. By taking f to be f(A,B,C) = AB − C we see that if A,B,AB ∈ O
(which by the Hermiticity of AB implies that A and B commute) we
have v(AB) = v(A)v(B).

The assignment v : (A) for A ∈ O is defined as follows. Write the spectral
decomposition of A as A =


i aiΠi where Πi are orthogonal (not necessarily

rank 1) projectors summing to I, and the ai are distinct eigenvalues of A.
By construction of S it contains projectors onto at least one eigenbasis of A
and so we can write Πi =


j Pij where Pij are orthogonal elements of S.

We set v(A) =


i,j aiv(Pij). But what we can also write some Πi =


j Qij

for some other Qij ∈ S? Since S contains projectors onto an at least one
eigenbasis of A, it contains projectors Rk such that Pii +


k Rk = I. But

then since v : S → {0, 1} is valid,


j v(Pij) +


j v(Rk) = 1 =


j v(Qij) +
j v(Rk) and so


j v(Pij) =


j v(Qij) and hence either contribute the

same to v(O).
Now suppose that A,B, . . . ∈ O commute. By the definition of S, pro-

jectors Pi onto some common eigenbasis are in S. Write A =


i aiPi (where
now ai can be repeated eigenvalues), B =


i biPi etc. f(A,B, . . . ) = 0 sim-

ply means that f(ai, bi, . . . ) = 0 for all i. By the above v(A) =


i aiv(Pi) =
aj where j is the unique index for which v(Pj) = 1 (with all other v(Pi) = 0).
Similarly v(B) = bj etc. Hence we immediately obtain f(v(A), v(B), . . . ) =
0.

The upshot is that the Kochen-Specker theorem can be proven by ex-
hibiting some observables that cannot be given valid valuations in the above
sense. This implicitly defines a KS set via the above construction.
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4 The Mermin-Peres square

We will now use the reformulations of the previous section to prove that a
finite KS set exists in all Hilbert spaces of dimension greater than 3. This is
slightly weaker than Theorem 1 but is also somewhat easier to prove. From
§3.1 we only need to exhibit a KS set in dimension 4. From §3.2 we can do
this using observables. The observables O we use [2] are tensor products of
Pauli observables, so that XY is shorthand for σx ⊗ σY etc. It is useful to
arrange them in a square:

XI IX XX
IY Y I Y Y
XY Y X ZZ

.

Every row and column in this square has the property that the product of
the first two elements is equal to the third, except the final column where
we have (XX)(Y Y ) = −ZZ. Suppose we had a valuation

v(XI) v(IX) v(XX)
v(IY ) v(Y I) v(Y Y )
v(XY ) v(Y X) v(ZZ)

.

Since the eigenvalues of the observables are ±1, the first numbered prop-
erty in §3.2 tells us that the v must be ±1. The third numbered prop-
erty tells us that v(XI)v(IY ) = v(XY ) etc, which we can also write as
v(XI)v(IY )v(XY ) = 1 etc. For the final column we have v(XX)v(Y Y ) =
−v(ZZ)1 which we write v(XX)v(Y Y )v(ZZ) = 1. In other words we have
a table of values ±1 whose rows and columns all multiply to 1, except for
the final column which multiples to −1. This means if we multiply the entire
table row-wise we get 1, whereas column-wise we get −1. Since changing the
order of multiplication for real numbers never changes the result, we have a
contradiction.

5 Comparison with older no-go theorems

5.1 Von Neumann

Von Neumann [3] assumed that observables must be assigned values such
that v(A+B) = v(A)+v(B) regardless of whether A and B commute. This

1The eagle-eyed reader will notice this goes slightly beyond the third numbered prop-
erty in §3.2, but it just as easily follows from the general condition involving f(A,B, . . . ).

4



is much stronger than assuming this condition only in the commuting case
and gives a contradiction already in dimension 2.

5.2 Gleason

Gleason [4] showed that if, in dimension greater than 2, all the rank 1
projectors {P} are assigned non-negative numbers p(P ) that sum to one over
all resolutions of the identity, then v(P ) = Tr(ρP ) for some positive operator
ρ with Tr(ρ) = 1. As noted by Bell [5], this in particular implies that v(P ) /∈
{0, 1} for some P , so we get something like the Kochen-Specker theorem as
a corollary. However the theorem needs an infinite set of projectors rather
than the finite sets used in KS. Since we can only implement a finite number
of measurements in an experiment, the KS theorem has more hope of an
experimental counterpart.

6 Frameworks

KS sets and related structures can be studied using a variety of frameworks.
This can be based on graph theory [6], hypergraph theory [7] (which makes
the connection to Bell’s theorem particular clear), sheaf theory [8] and more.

Part II

Operational contextuality

7 Two assumptions give rise to two questions

Bell’s theorem can be considered a theoretical result that quantum theory is
incompatible with local causality. However, we can go much further than this
and do an experiment (a “Bell experiment”) showing nature is incompatible
with local causality, regardless of whether quantum theory is exactly true.

Can something similar be done, starting from the Kochen-Specker the-
orem? If so, this could give a route to experimentally certifying that single
systems behave in a non-classical way (recall that Bell experiments require
at least two systems).

The starting point for an experiment will presumably be to take some KS
set an attempt to actually implement the measurements in it. Such an imple-
mentation will never be perfect, so the problem of operational contextuality
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is basically to have a principled way of saying how good the implementation
has to be in order to say something interesting.

There are two important ways in which an implementation can deviate
from the ideal, which are closely linked to the two “physical assumptions”
discussed in §2:

1. The KS set is built from projective measurements. But an implemen-
tation will inevitably involve some POVMs that approximate those
projective measurements.

2. The same projector appears in different measurements. But if we
implement two different measurement procedures there will never be
two outcomes that implement the exact projector (or POVM effect).

Therefore we need to know:

1. How close to projective measurement do we need to get?

2. How close to “the same projector” do we need to get?

Taking a step back, we really want to be able to analyse our experiment
without reference to quantum theory. So we should be able say:

1. What does “projective measurement” even mean operationally?

2. What does “the same projector” even mean operationally?

These quantitive and qualitative questions are closely related. If the
answers to the quantitive are stated in operational terms, then setting the
“closeness” to zero will give answers to the qualitative questions. And if we
can justify our answers to the qualitative questions by showing how they are
connected to the impossibility of a non-classical model, we should be able to
quantify this connection to answer the corresponding quantitive questions.

Two approaches to these questions have been taken, one is to start from
the KS theorem and try to figure out good answers somehow (the “incre-
mental approach”), the other is to give a totally operational notion of non-
contextuality and work out the answers from that.

8 Comments on some incremental steps

The literature on testing the Kochen-Specker theorem without a wholesale
new notion of noncontextuality is extensive but rather disjointed. I have not
been able to identify a single fully worked-out proposal for how to do this.
However there are several ideas that often appear. Here I evaluate whether
those ideas make sense even within the setting of quantum theory.
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8.1 Just use any measurement?

We might ask if the notion of noncontextuality used in the Kochen-Specker
theorem can be directly generalised to arbitrary measurements. However,
this doesn’t give an interesting notion. Take the POVM (on a qubit, for
example) 

I

2
,
I

2


.

If we set v(I/2) = 0 then neither outcome occurs, and if we set v(I/2) = 1
both outcomes occur. Either is a violation of the condition that the values
should sum to 1 for any measurement.

When we notice that this POVM can be implemented by throwing away
the system and tossing an unrelated fair coin, we see that there is absolutely
no reason to think of this measurement as revealing any pre-existing property
of the system. Solving v(I/2) + v(I/2) = 1 gives v(I/2) = 1/2 which makes
perfect sense, at least for this implementation. See [9] for further discussion.

8.2 Repeatability?

It has often been suggested that the crucial feature of projective measure-
ments is that they are repeatable, i.e. if you do the same measurement again
you get the same result.

However, this is not actually enough to ensure a measurement is projec-
tive. Consider the qutrit POVM


|1〉 〈1|+ |2〉 〈2|

2
,
|2〉 〈2|

2
+ |1〉 〈1|


.

If the post-measurement state is |1〉 for the first outcome and |3〉 for the
second, then this measurement is repeatable.

8.3 Sharpness

It has been shown [10] that projective measurements in quantum theory are
exactly those with two operational properties:

1. Repeatability, as above.

2. Minimally disturbing: the measurement procedures only disturbs the
statistics of incompatible measurements.
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The fact this has been proven to be equivalent to projective measure-
ments in quantum theory is a very good start. However, more needs to
be done to show how the minimal disturbance condition can actually be
checked using experimental data.

8.4 Boxes that measure observables

If we have a box designed to measure some observable, it seems reasonable
to assume that it always does the same thing no matter where it in an
experiment it is used. However, a proof of the Kochen-Specker theorem will
now involve joint measurements of commuting observables. If we implement
this by putting one box after another, we need to be sure that the value
revealed by the second box is independent of whether the first box is there.
Since we know quantum measurements are disturbing, this means we need to
be sure the first measurement is compatible with the second. So the problem
of identifying the same projector in different measurements has simply been
shifted to the problem of identifying compatible measurement procedures.

9 Fully operational notion

A fully operational notion of noncontextuality has been proposed by Spekkens
[11]. It uses the notion of an ontological model of an operational theory:

p(k|M,P) =


p(k|M,λ)p(λ|P)dλ

9.1 Measurement noncontextuality

We tackle the second question first, regarding “the same projectors” appear-
ing in multiple measurements. In quantum theory two projectors are equal
if and only if they get the same probability on all states:

P = P ′ ⇐⇒ Tr(ρP ) = Tr(ρP ′) ∀ρ

The right hand side can be written operationally

p(k|M,P) = p(k′|M′,P) ∀P

In the Kochen-Specker theorem we assumed the same projector always
gets the same value. But if we want to allow for noisy measurements we
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shouldn’t assume outcome determinism. Hence we instead assume the prob-
ability for that outcome is the same:

p(k|M,P) = p(k′|M′,P) ∀P =⇒ p(k|M,λ) = p(k′|M′,λ) ∀λ

In words: operationally equivalent measurements are ontologically equiv-
alent.

9.2 Preparation noncontextuality

We can notice that there are also operationally equivalent preparations. (In
quantum theory, these are preparations represented by the same density
operator.) Why not also impose that these operational equivalences imply
ontological equivalence?

p(k|M,P) = p(k|M,P ′) ∀k,M =⇒ p(λ|P) = p(λ|P ′) ∀λ

9.3 Outcome determinism

The assumption of preparation noncontextuality implies outcome determin-
ism for certain measurements, thus answering the second question and then
extending the principle involved gives an answer to the first question (which
measurements are “projective”) for free.

I will sketch the proof within quantum theory for the simple example
of Pauli X and Z measurements on a qubit. The crucial property turns
out to be that for each outcome of these measurements there exists a state
that makes that outcome certain. For example, if we prepare |0〉 and then
measure Pauli Z we get +1 with certainty:

p(+1|M = Z,P = |0〉) = 1

This means that for states Λ0 := {λ : p(λ|P = |0〉) > 0} we must have
p(+1|M = Z) = 1. Similarly |1〉 makes the −1 outcome certain so for
Λ1 := {λ : p(λ|P = |1〉) > 0} we have p(−1|M = Z) = 1. Overall then we
have outcome determinism for the Z measurement for all the ontic states in
Λ0 ∪ Λ1.

For theX measurement we have preparations |+〉 and |−〉 that makes the
outcome certain. Hence by a similar argument we have outcome determinism
for the X measurement for Λ+ ∪ Λ− where Λ± = {λ|p(λ|P = |±〉) > 0}.
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Now comes the application of preparation noncontextuality. We notice
that tossing a fair coin and then preparing |0〉 or |1〉 is operationally equiv-
alent to tossing a fair coin and then preparing |+〉 or |−〉:

|0〉 〈0|+ |1〉 〈1|
2

=
|+〉 〈+|+ |−〉 〈−|

2

By preparation noncontextuality this operational equivalence implies on-
tological equivalence:

p(λ|P = |0〉) + p(λ|P = |1〉)
2

=
p(λ|P = |0〉) + p(λ|P = |1〉)

2

The LHS is nonzero on Λ0 ∪ Λ1, where we know the Z measurement is
outcome deterministic. The RHS is nonzero on Λ+ ∪ Λ−, where we know
X is outcome deterministic. Since the LHS equals the RHS, these are the
same sets and so we have outcome determinism for both measurements on
the same ontic states.

9.4 Noisy measurements

The results of the previous section can be generalised to show that if a mea-
surement is close to being perfectly predictable then outcome determinism
approximately holds on average [12].

If an operational equivalence of procedures fails to hold exactly, convexity
can be used to find procedures for which it does hold exactly [13].

Together these answer the quantitative versions of both questions.
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[7] A. Aćın, T. Fritz, A. Leverrier, and A. B. Sainz, Comm. Math. Phys.
334, 533 (2015), arXiv:1212.4084 .

[8] S. Abramsky and A. Brandenburger, New J. Phys. 13, 113036 (2011),
arXiv:1102.0264 .

[9] R. W. Spekkens, Found. Phys. 44, 1125 (2014), arXiv:1312.3667 .

[10] G. Chiribella and X. Yuan, “Measurement sharpness cuts nonlocality
and contextuality in every physical theory,” (2014), arXiv:1404.3348 .

[11] R. W. Spekkens, Phys. Rev. A 71, 052108 (2005), arXiv:quant-
ph/0406166 .

[12] R. Kunjwal and R. W. Spekkens, Phys. Rev. Lett. 115, 110403 (2015),
arXiv:1506.04150 .

[13] M. D. Mazurek, M. F. Pusey, R. Kunjwal, K. J. Resch, and R. W.
Spekkens, Nat. Commun. 7, 11780 (2016), arXiv:1505.06244 .

11

https://arxiv.org/abs/1212.4084
https://doi.org/10.1088/1367-2630/13/11/113036
https://arxiv.org/abs/1102.0264
https://doi.org/10.1007/s10701-014-9833-x
https://arxiv.org/abs/1312.3667
https://arxiv.org/abs/1404.3348
https://doi.org/10.1103/PhysRevA.71.052108
https://arxiv.org/abs/quant-ph/0406166
https://doi.org/10.1103/PhysRevLett.115.110403
https://arxiv.org/abs/1506.04150
https://doi.org/10.1038/ncomms11780
https://arxiv.org/abs/1505.06244

