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This set of notes cover a slightly different set of topics to those of the summer school

lectures, but broadly follow the same lines.

I. NONLOCALITY, EPR AND BELL’S THEOREM

In this section we will examine in detail one of the most fascinating departures from classical

theory exhibited by our world, so-called non-locality. Although non-locality at first seems like an

odd curiosity of the theory, it is in fact connected to a practical application: cryptography.

Quantum mechanics is a probabilistic theory: it does not assign precise values to experimental

outcomes, but instead prescribes the distribution over the outcomes, even with the most complete

description of the state within the theory. For example, when a particle in the state 1√
2
(|0〉 +

|1〉) is measured in the {|0〉, |1〉} basis, according to quantum theory each outcome occurs with

probability 1
2 . (Note that, since the state is pure, this is the most complete description we can

have about it.)

This is already a stark departure from classical theory which is fundamentally deterministic: any

uncertainty we may have about the outcomes of future events is purely due to a lack of knowledge

about the initial configuration.

This inherent randomness was widely discussed in the early days of quantum mechanics, and

led Einstein, Podolsky and Rosen (EPR)1 to question the completeness of the theory. They con-

sidered a measurement on one half of a maximally entangled pair in the state |Ψ−〉 whose outcome

(according to the theory) allows perfect prediction of the outcome of the analogous measurement

on the other half (the outcomes are always anti-correlated). Furthermore, this holds no matter

how far apart the two particles are.

A natural way to explain such correlations, is to imagine that the quantum state is not the

most complete description of the system, but that, in fact, some additional shared randomness

was given to the particles by the source (this type of additional information is often termed local
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hidden variable, see later). The anti-correlated outcomes can then be alternatively explained using

this shared randomness.

A. Non-locality

As argued above, perfectly anti-correlated outcomes do not present any mystery. If sleeping

beauty awakes one day and sees daylight, she immediately knows it is night on the opposite side

of the planet, and there is nothing surprising about that. However, quantum theory does contain

mysterious correlations, unexplainable in such a classical way. Such correlations are said to be

non-local and are important in the context of Bell’s theorem.

1. Example

Before discussing in more detail, here is an example that neatly shows the power of quantum

correlations, in the form of a game between three co-operating players and a referee. The three

players are going to play the following game. They will be isolated from one another and each will

be asked one of two questions by the referee (the first party’s question is denoted A ∈ {0, 1}, the

second party’s B ∈ {0, 1} and the third party’s C ∈ {0, 1}) to which they must answer either +1

or −1. The set of questions is picked uniformly from

(A,B,C) = (0, 0, 0), (0, 1, 1), (1, 0, 1), and (1, 1, 0) .

If the set (0, 0, 0) is asked, they win the game if the product of their outputs is −1, while for

each of the remaining sets of questions, they win the game if the product of their outcomes is +1.

The three players know the rules of the game and are allowed to meet beforehand to discuss their

strategy. However, no communication is allowed once they are isolated at the start of the game.

Let’s think about ways to win this game. Imagine that, at the start of the game, the players

agree on two values each, one of which is output if they receive input 0, and the other is output

if they receive input 1 (let us denote these values x0, x1 for the first player y0, y1 for the second

and z0, z1 for the third, so that x0 ∈ ±1 is the output made by the first player if asked question

A = 0). We call such a strategy an assignment strategy. One possible choice is for all of the values

x0, x1, y0, . . ., z1 to be +1. This strategy wins the game with probability 3
4 , since the product of

the outputs is +1, which wins the game unless (A,B,C) = (0, 0, 0).

So if we play the game once and the players win, we shouldn’t be very surprised. But what if

we play the game 100 times and the players always win? Using the above strategy, the probability
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of this is (3
4)100 ∼ 10−13, but is there a better strategy?

It turns out that no assignment strategy can always win the game. To see this note that the

requirements on the values are that

x0y0z0 = −1, x0y1z1 = 1, x1y0z1 = 1 and x1y1z0 = 1.

The product of the left-hand-sides is (x0x1y0y1z0z1)2, while the product of the right-hand-sides in

−1, a contradiction. In fact, the best assignment strategy has success probability 3
4 . (To rigorously

confirm this, we could run through each of the 26 assignments.)

However, we can always win the game using a quantum strategy! If the three players share

the state 1√
2
(|000〉 − |111〉) and each player on receiving 0 measures the observable σx (i.e., with

measurement operators {|+〉〈+|, |−〉〈−|}) and on receiving 1 measures the observable σy, giving the

measurement outcome as their output, then they always win the game. The resulting correlations

are called the GHZ correlations, and the above game is called the GHZ pseudo-telepathy game

(the reason for calling it pseudo-telepathy is that the ability to always win the game cannot be

explained from a classical point-of-view, and hence might appear telepathic).

That no assignment strategy works is the idea behind the potential power of GHZ (or indeed

other) correlations in cryptography. One reverses the role of the game, replacing the referee with

an adversary who is asked to send states to Alice, Bob and Charlie which together always win the

GHZ game. The idea is that in order to do so, the adversary cannot use an assignment strategy,

and hence has limited information about the outcomes. We will come back to this point later.

B. Local deterministic theories

In this section, we will consider bipartite correlations (although what we say can readily be

generalized to more parties). Consider two distant particles and performing a measurement on

each at spacelike separation. We denote the choice of measurement using A and B, and the

respective outcomes X and Y . The distribution of outcomes given the measurement choices is

denoted PXY |AB. For the moment, we can forget quantum theory, and think of this setup in an

unspecified theory. A general theory is based on some parameters that we denote using Λ, and

gives us a prescription to compute the output distribution PXY |ABΛ based on the settings and the

parameters of the theory.

Firstly, we make the important assumption that A and B can be chosen freely. We now explain

what this means.
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1. Free choice

It is difficult to imagine talking about physics without free choice. It is a notion that finds itself

embedded within the usual language we use to describe physical scenarios. We ask questions of

the form “What would happen if...” and reason about the consequences. Such statements are only

meaningful under the premise that it is possible to set up the scenario in question.

Thus, free choice is a property of the way we describe the world, with an interventionist picture.

We would not find a theory satisfying if there were particular scenarios (or sets of initial conditions)

for which it would fail to compute the future evolution. Sometimes free choice has been called a no-

conspiracy assumption, the idea being that if free choice were not to hold—i.e., were it impossible

to set up a particular scenario—it would be a conspiracy on the part of nature preventing certain

measurements being performed in certain situations. Note that although this may be considered a

conspiracy, it isn’t something that can be excluded experimentally.

Mathematically, free choice is the assertion that certain variables, “choices”, are independent of

certain other variables. When formulating a free choice assumption, one has to say how to specify

these other variables. As we will explain, a natural way to make this specification is connected to

the causal order.

Consider a simple setup where a system is prepared in state Λ and measured according to A,

producing an outcome X. For A to be free it is natural to demand that it can be chosen indepen-

dently of Λ, i.e., PA|Λ = PA. However, it would be too restrictive to also require independence from

X, i.e., PA|XΛ = PA, as we expect the outcome of an experiment to depend on the measurement.

This simple example illustrates that the notion of free choice is intrinsically connected to a causal

order: we don’t require that the free choice A is uncorrelated with X since X lies in the causal

future of A.

This is the principle on which the general definition of free choice is based. For a collection of

random variables, we give a causal order by drawing a set of arrows ( ) between the variables.2

These arrows should be interpreted as pointing to the future, so that, for example, G  H

indicates that H is in the causal future of G. Note that H can be in the causal future of G without

G necessarily being a cause of H. We also use G 6 H to indicate that H is not in the causal

future of G. Note also that the relation  is transitive, so E  F and F  G implies E  G.

This fits well with our common understanding of “future”.

2 More precisely, a causal order is a binary relation ( ) on those variables that is reflexive (G G) and transitive
(G H and H  J implies G J), in other words, a preorder relation.
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FIG. 1: Two examples of a causal order. In (a), F being free implies PF |EG = PF , while in (b), if A is free

then PA|BY Λ = PA, for example.

With respect to a given causal order, free choice can be defined as follows:

A random variable G is a free choice with respect to some causal order if G is

uncorrelated with all variables of the causal order outside its causal future.

Said another way, G is free with respect to some causal order, if the only other variables it is

correlated with are those that it could have caused.

For this definition, one can only make sense of free choice within a defined causal order. In

principle, this may be selected arbitrarily. However, there is usually a well-motivated way to set

this based on the physical situation. For example, it is natural to take G  H to hold if and

only if there exists a reference frame in which G occurs at an earlier time to H. In this way, the

causal order is compatible with relativity theory. (Note, however, that doing this is not the same as

assuming relativity theory. Instead, relativity simply acts as a physical motivation for the chosen

causal order.) See Fig. 1 for examples.

Note that quantum theory is compatible with free choice with respect to the causal order in

Fig. 1(b) (in the case of quantum theory, Λ is the quantum state Ψ). To see this, consider a

measurement on the 2nd part of an entangled state |ψ〉12. If the measurement B = b has operators

{M b
y}y3, then on obtaining outcome Y = y, the post-measurement state is

|φby〉 =
1√

PY |bψ(y)
(11⊗M b

y)|ψ〉12 ,

where

PY |bψ(y) = 〈ψ|(11⊗ (M b
y)†M b

y)|ψ〉 .

3 The condition for a valid measurements is that
∑

y(Mb
y)†Mb

y = 11 for all b.
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Independently of the value of Y that occurred, we can still measure the 1st system with any

distribution over the possible measurements, PA|byψ, we like, and quantum theory allows predict

the distribution of outcomes. For measurement {Na
x}x, the outcome distribution is

PX|abyψ(x) = 〈φby|((Na
x )†Na

x ⊗ 11)|φby〉 .

2. Connection to no signalling

In the bipartite scenario in question, the natural causal order is that of Fig. 1(b), which we

henceforth call the bipartite causal order. The parameters of the higher theory, Λ, can be associated

with the generation of the systems, and hence are naturally taken to be in the causal past of the

measurements.

It turns out (see exercises) that free choice within this causal order implies

PXΛ|AB = PXΛ|A and PY Λ|AB = PY Λ|B ,

which are essentially no-signalling conditions (they say that if Alice holds one of the systems and

has access to Λ, then Bob cannot signal to her, for example). (Note that quantum correlations,

in spite of their apparent pseudo-telepathic properties mentioned above, do not allow signalling.

Thus, if we look at quantum theory, which is the case where Λ is the quantum state, then we get

compatibility with free choice in this causal order).

After this (slightly lengthy) aside, let us return to our discussion of general theories for some set

of correlations PXY |AB. A general theory based on parameters Λ specifies a distribution PXY |ABΛ,

as well as some distribution on Λ. The theory is a good one for the observed correlations if

PXY |AB =
∑
λ

PΛ(λ)PXY |ABλ .

Note that we have implicitly assumed free choice, since for an arbitrary distribution, by definition

of conditional probability, we have

PXY |AB =
∑
λ

PΛ|AB(λ)PXY |ABλ ,

which reduces to the previous equation when PΛ|AB = PΛ (which in turns follows from A and B

being chosen freely wrt the causal order of Fig. 1).

Now let us specialize to the case of local deterministic theories. In such a theory, the outcomes

X and Y are completely determined by the local measurement settings and the parameters of the
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theory. This means that

PXY |ABλ = PX|AλPY |Bλ ,

with PX|aλ(x) ∈ {0, 1} and PY |bλ(y) ∈ {0, 1} (such distributions are said to be local deterministic).

To summarize, we say that a set of correlations PXY |AB can be described in a local determin-

istic theory (with parameters Λ) if it can be expressed in the form

PXY |AB =
∑
λ

PΛ(λ)PX|AλPY |Bλ, (1)

where PΛ is a distribution and PX|aλ(x) ∈ {0, 1} and PY |bλ(y) ∈ {0, 1} for all a, b, x, y, λ. Correla-

tions which cannot be expressed in this way are said to be non-local.

A note on terminology: Correlations that can be described by a local deterministic theory

are also said to have a deterministic local hidden variable description, the idea being that the

parameters of the deterministic theory must be unknown to us today (since we use quantum theory)

and are therefore “hidden variables”. Strictly (1) describes correlations that can be described by a

local deterministic theory compatible with free choice within the bipartite causal order. The free

choice part is often left implicit for brevity, however, it is an important assumption that shouldn’t

be forgotten.

Note also that correlations that can be described by a local deterministic theory can also be

thought of as ones that have a “reasonable classical explanation”, or as correlations that shouldn’t

be surprising if we live in a classical world. Consider again the EPR correlations, for example.

These satisfy PXY (x, y) = 1
2(1 − δx,y), where x, y ∈ {0, 1}. We can explicitly see that these

correlations admit a local hidden variable description, as follows (in this case, there is no choice of

input A and B).

Let Λ is a binary random variable that satisfies PΛ(0) = PΛ(1) = 1
2 , PX|λ(x) = δx,λ and

PY |λ(y) = 1− δy,λ. Then,

∑
λ

PΛ(λ)PX|λ(x)PY |λ(y) =
1

2

∑
λ

δx,λ(1− δy,λ) =
1

2
(1− δx,y) = PXY (x, y) .

C. Bell’s theorem

Having discussed local deterministic theories, we now would like a way to certify that particular

correlations can be described in such a theory. A Bell inequality is a necessary condition for

this to be possible. In other words, correlations that violate a Bell inequality cannot be described
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by a local deterministic theory. Roughly speaking, Bell’s theorem says that there are quantum

correlations that don’t satisfy all Bell inequalities. We will proceed with a discussion of this.

We consider again the bipartite setting above and imagine that on each particle one of two

measurements is made, i.e. A ∈ {0, 2} and B ∈ {1, 3}, giving one of two outcomes X,Y ∈ {0, 1}.

We then characterize the quantum correlations in terms of the following quantity (the reason for

calling this I2 will become clear later)

I2 = P (X = Y |0, 3) + P (X 6= Y |0, 1) + P (X 6= Y |2, 1) + P (X 6= Y |2, 3).

To connect to an alternative notation, note that P (X = Y |a, b) =
∑

x PXY |ab(x, x), and hence

P (X 6= Y |a, b) = 1−
∑

x PXY |ab(x, x).

If PXY |AB can be described by a local deterministic theory (i.e. can be written in the form

of (1)) then I2 ≥ 1. This relation (a constraint on the correlations of any local deterministic

theory) is called a Bell inequality4 The proof of this inequality is a simple exercise in probability

theory and will be worked out in the exercises. [Note that our definition of a theory includes that

A and B are free choices wrt the causal order in Fig. 1.]

The amazing thing is that there exist quantum correlations that do not satisfy I2 ≥ 1. This is

often stated as “quantum correlations are non-local”, which is shorthand for the statement “there

exist quantum correlations that cannot be described by any local deterministic theory”. Again we

will see this on the exercises. [Additional exercise: show that local measurements on unentangled

quantum states also obey I2 ≥ 1.]

We can therefore state Bell’s theorem more formally:

Theorem 1 (No locally deterministic theory can reproduce all quantum correlations). Let A, B,

X, Y and Λ be RVs. Then at least one of the following cannot hold:

• Freedom of choice: A and B are free with respect to the causal order depicted in Figure 1;

• Compatibility with quantum theory: PXY |ABΛ is compatible with the predictions of quantum

theory (in the sense of (1)) for all quantum realisable PXY |AB;

• Local determinism: PXY |abλ(x, y) = PX|aλ(x)PY |bλ(y) ∀ a, b, x, y, λ, PX|aλ(x) ∈ {0, 1} ∀ a, λ

and PY |bλ(y) ∈ {0, 1} ∀ b, λ.

4 This is a actually a rewriting of the CHSH inequality [Proposed experiment to test local hidden-variable theories,
Physical Review Letters 23 880–884 (1969)], see exercises.
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This is the neutral way of stating the theorem. However, usually it is phrased as that the

first and third conditions rule out the second. We can also specifically mention the quantum

correlations that (maximally) violate I2 ≥ 1. These are formed by measurements on the maximally

entangled 2-qubit state |Φ+〉 = 1√
2
(|00〉 + |11〉), where A = 0 corresponds to measurement in

the {|0〉, |1〉} basis, A = 2 corresponds to measurement in the {|+〉, |−〉} basis, while B = 1

corresponds to measurement in the {cos π8 |0〉 + sin π
8 |1〉, sin

π
8 |0〉 − cos π8 |1〉} basis and B = 3 is in

the {cos 3π
8 |0〉+ sin 3π

8 |1〉, sin
3π
8 |0〉− cos 3π

8 |1〉} basis. If we use Ma
x for the respective measurement

operators of Alice and N b
y for those of Bob (e.g., M0

0 = |0〉〈0|, M0
1 = |1〉〈1|, M2

0 = |+〉〈+| and

M2
1 = |−〉〈−| etc.) then PXY |ab(x, y) = 〈Φ+|(Ma

x ⊗ N b
y)|Φ+〉 are the quantum predictions. [Note

that all the measurements are projective so (Ma
x )2 = Ma

x etc.]

Theorem 2 (Bell’s theorem reformulated). Suppose A, B, X, Y and Λ be RVs, that A and

B are free with respect to the causal order depicted in Figure 1, and that PXY |abλ(x, y) =

PX|aλ(x)PY |bλ(y) ∀ a, b, x, y, λ, PX|aλ(x) ∈ {0, 1} ∀ a, λ and PY |bλ(y) ∈ {0, 1} ∀ b, λ.

Then it is not possible for PXY |ab(x, y) to be the distribution generated by the state and mea-

surements specified above.

D. Other Bell inequalities

The term Bell inequality is usually used to refer to any (non-trivial) constraint on the outcome

probabilities satisfied by correlations that admit a local hidden variable description. (The trivial

constraints are that the probabilities are non-negative.) We have seen another example already,

in the form of the three-party game discussed in Section I A 1. We will discuss a further family of

bipartite inequalities here, called chained Bell inequalities.

It turns out that the minimum value of I2 that can be achieved quantum mechanically is

4 sin2 π
8 = 2−

√
2 ≈ 0.59. However, the minimum possible value of I2 (for any correlations) is 0 (I2

is the sum of positive quantities). There is a family of generalizations of I2 that we call IN . They

maintain the classical minimum at 1, but there exist quantum correlations that get arbitrarily close

to 0.

The generalizations of I2 allow N measurement choices for each of the two parties (we denote

these choices A ∈ {0, 2, . . . 2N − 2} and B ∈ {1, 3, . . . 2N − 1}). We define

IN = P (X = Y |0, 2N − 1) +
∑
a,b

|a−b|=1

P (X 6= Y |a, b) . (2)
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For any N ≥ 2, IN ≥ 1 in a Bell inequality. There exist quantum correlations satisfying IN =

2N sin2( π
4N ), which tends to 0 for largeN . This family of Bell inequalities is useful for cryptography.

II. LOOPHOLES

For a discussion of these I recomment the relevant sections of the review article Bell Nonlocality

by Brunner et al. Revews of Modern Physics 86 (2014).

III. EXERCISES

A. Exercise 1

Consider a bipartite setting in which two spacelike separated parties make measurements (their

choices being denoted A ∈ {0, 2} and B ∈ {1, 3}) with respective outcomes X ∈ {0, 1} and Y ∈

{0, 1} giving rise to a joint distribution PXY |AB. It will be convenient to write such distributions

in the form of a table of values as follows:

PXY |AB B 1 3

Y 0 1 0 1

A X

0
0 P00|01 P01|01 P00|03 P01|03

1 P10|01 P11|01 P10|03 P10|03

2
0 P00|21 P01|21 P00|23 P01|23

1 P10|21 P11|21 P10|23 P11|23

This form is convenient because the fact that Alice cannot signal to Bob and vice versa can be

seen by checking that within each row, the sum of the left two elements is equal to the sum of the

right two elements, and analogously for the columns. We will also consider the quantity

I2 = P (X = Y |0, 3) + P (X 6= Y |0, 1) + P (X 6= Y |2, 1) + P (X 6= Y |2, 3).

(a) Draw the natural causal order associated with this setup (including allowance for an additional

parameter Λ representing the parameters of a candidate alternative theory) and show that if

A and B are free choices with respect to this causal order then it follows that PXΛ|AB = PXΛ|A

and PY Λ|AB = PY Λ|B. [Hint: consider expanding PXBΛ|A using the definition of conditional

probability.] Show that this implies that Alice (holding the (A,X) system) cannot signal to

Bob (holding the (B, Y ) system) even if both parties know Λ.
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(b) A local deterministic distribution is one in which PX|a(x) ∈ {0, 1} and PY |b(y) ∈ {0, 1} for

all a, b, x, y. Write down a local deterministic distribution in the form of such a table. How

many such distributions are there?

(c) Consider now a general distribution PXY |AB that can be described in a local deterministic

theory, i.e., that can be decomposed as a convex combination of deterministic distributions.

Show that any such distribution satisfies I2 ≥ 1.

(d) Consider the distribution

PXY |AB B 1 3

Y 0 1 0 1

A X

0
0 1

4
1
4

1
2 0

1 1
4

1
4

1
2 0

2
0 1

2
1
2 1 0

1 0 0 0 0

Show that this can be described in a local deterministic theory.

(e) Consider the quantum correlations resulting from measurement on the state |Φ+〉 = 1√
2
(|00〉+

|11〉), where A = 0 corresponds to measurement in the {|0〉, |1〉} basis, A = 2 corresponds

to measurement in the {|+〉, |−〉} basis, while B = 1 corresponds to measurement in the

{cos π8 |0〉+sin π
8 |1〉, sin

π
8 |0〉−cos π8 |1〉} basis and B = 3 is in the {cos 3π

8 |0〉+sin 3π
8 |1〉, sin

3π
8 |0〉−

cos 3π
8 |1〉} basis. (These measurements correspond to the observables σz and σx for one party

and 1√
2
(σx ∓ σz) for the other party.) These correlations take the form

PXY |AB B 1 3

Y 0 1 0 1

A X

0
0 1

2 − ε ε ε 1
2 − ε

1 ε 1
2 − ε

1
2 − ε ε

2
0 1

2 − ε ε 1
2 − ε ε

1 ε 1
2 − ε ε 1

2 − ε

.

Determine the value of ε and hence find the value of I2 for these correlations. Comment on

your answer in light of Part (c).
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(f) Consider now an analogous set of correlations, but with a value of ε higher than that for the

quantum correlations given above (but with ε ≤ 1
4). Give the form of a 1-parameter family of

(mixed) quantum states which gives such correlations using the same measurements.

(g) At what value of ε do the correlations cease to violate I2 ≥ 1? What is the trace distance

between the corresponding quantum state and |Φ+〉?

B. Exercise 2

Consider the Bell inequality I2 ≥ 1, as introduced in the lectures. In this exercise, we consider

an alternative way to express this. Suppose that we relabel the measurement outcome X = 0 as

X = −1, and similarly for Y , so that X,Y ∈ {−1, 1} (rather than {0, 1} as in the lectures). For

measurement A = 0, define an observable A0, and similarly for A = 2, B = 1 and B = 3. Show

that 〈A0 ⊗ B1〉 = P (X = Y |0, 1) − P (X 6= Y |0, 1). By expressing 〈A0 ⊗ B3〉, 〈A2 ⊗ B3〉 and

〈A2 ⊗B1〉 similarly, show that I2 ≥ 1 implies

〈A0 ⊗B1〉+ 〈A2 ⊗B1〉+ 〈A2 ⊗B3〉 − 〈A0 ⊗B3〉 ≤ 2

(this is a common form in which to express this Bell inequality, and the above is usually called the

CHSH inequality).

The quantum bound on I2 is I2 ≥ 2−
√

2. Use this to calculate the maximum value of

〈A0 ⊗B1〉+ 〈A2 ⊗B1〉+ 〈A2 ⊗B3〉 − 〈A0 ⊗B3〉

that can be achieved quantum mechanically (this bound is called Tsirelson’s bound).

IV. SOLUTIONS

A. Solution 1

(a) The causal order was given in the notes. Free choice gives PA|BY Λ = PA and PB|AXΛ = PB. Now

consider PXBΛ|A. This can be expanded as PXBΛ|A = PXΛ|APB|AXΛ, or PXBΛ|A = PB|APXΛ|AB.

Free choice gives that PB|AXΛ = PB|A = PB, so we have PXΛ|A = PXΛ|AB. Analogously, by

symmetry, we have PY Λ|B = PY Λ|AB. This implies PY |ABΛ = PY |BΛ, i.e., Alice cannot signal to

Bob, even if he knows Λ. (If two distributions are equal, then so are their marginals.)

(b) Local deterministic strategies look as follows:
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PXY |AB B 1 3

Y 0 1 0 1

A X

0
0 1 0 1 0

1 0 0 0 0

2
0 1 0 1 0

1 0 0 0 0

and there are 16 = 4 × 2 × 2 of them (4 ways to choose the 1 in the top left, then 2 in the top

right, then two in the bottom left, which fixes the last position).

(c) It is easy to see that the smallest I2 for a local deterministic strategy is 1 (if you’re in doubt,

there are only 16 cases to check). By definition, a distribution that admits a local hidden variable

description is a convex combination of local deterministic strategies. Since I2 is linear, it satisfies

I2 ≥ 1.

(d) The distribution can be decomposed into the following convex combination of local deterministic

distributions:

1

4


1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

+

0 1 1 0

0 0 0 0

0 1 1 0

0 0 0 0

+

0 0 0 0

1 0 1 0

1 0 1 0

0 0 0 0

+

0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

 .

Thus we can take PΛ(0) = PΛ(1) = PΛ(2) = PΛ(3) = 1
4 , and for example, if Λ = 0, then X = 0

and Y = 0, if Λ = 1, then X = 0, Y =

 0 if B = 1

1 if B = 3
, etc.

(e) We have

PXY |A=0,B=1(0, 0) = |〈Φ+|(|0〉 ⊗ (cos
π

8
|0〉+ sin

π

8
|1〉))|2 = | 1√

2
cos

π

8
|2 =

1

2
cos2 π

8
=

1

2
(1− sin2 π

8
)

PXY |A=0,B=1(0, 1) = |〈Φ+|(|0〉 ⊗ (sin
π

8
|0〉 − cos

π

8
|1〉))|2 =

1

2
sin2 π

8
...

PXY |A=0,B=3(0, 0) = | 1√
2

cos
3π

8
|2 =

1

2
sin2 π

8

...

etc. so that ε = 1
2 sin2 π

8 = 1
4(1− cos π4 ) = 1

4(1− 1√
2
) = 1

8(2−
√

2) ≈ 0.073.

The value of I2 is hence 8ε = (2−
√

2) ≈ 0.59.
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Since this is smaller than 1, these correlations violate the Bell inequality.

(f) Consider the state σ = p|Φ+〉〈Φ+| + (1 − p)11
4 . It has the form in the question where ε =

p
8(2 −

√
2) + 1−p

4 = 1
8(2 −

√
2p), or p =

√
2(1 − 4ε). You may alternatively have expressed this in

terms of p′ = 1− p, leading to p′ = 1−
√

2(1− 4ε) = (1−
√

2) + 4
√

2ε.

(g) Since I2 = 8ε, we have I2 < 1 for ε < 1
8 . D(|Φ+〉〈Φ+|, σ) = 1

2tr||Φ+〉〈Φ+| − σ|. However, both

states are diagonal in the same (Bell) basis, so we can calculate the classical distance between the

distributions (1, 0, 0, 0) and (p+(1−p)/4, (1−p)/4, (1−p)/4, (1−p)/4). This is 1−p− (1−p)/4 =

3(1− p)/4. For ε = 1
8 , we have p =

√
2(1− 4ε) = 1√

2
, so we obtain distance 3

4(1− 1√
2
) ≈ 0.22.

B. Solution 2

〈A0 ⊗ B1〉 =
∑

xy xyPXY |0,1(x, y) = PXY |01(1, 1) − PXY |01(−1, 1) − PXY |01(1,−1) +

PXY |01(−1,−1) = P (X = Y |0, 1)− P (X 6= Y |0, 1)

Similarly for the others, hence, noting that P (X = Y |0, 1) − P (X 6= Y |0, 1) = 2P (X =

Y |0, 1)− 1 = 1− 2P (X 6= Y |0, 1),

〈A0 ⊗B1〉+ 〈A2 ⊗B1〉+ 〈A2 ⊗B3〉 − 〈A0 ⊗B3〉

= 3− (P (X 6= Y |0, 1) + P (X 6= Y |2, 1) + P (X 6= Y |2, 3)) + 1− 2P (X = Y |0, 3)

= 4− 2I2

≤ 2 .

In the quantum case, we instead have 4−2I2 ≤ 4−2(2−
√

2) = 2
√

2, so for quantum correlations

〈A0 ⊗B1〉+ 〈A2 ⊗B1〉+ 〈A2 ⊗B3〉 − 〈A0 ⊗B3〉 ≤ 2
√

2 .
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