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Chapter 1

Ontological models

1.1 Introduction

In this series of lectures, we will be concerned with studying different models
one can construct to explain Quantum statistics. Before beginning our dis-
cussion on the motivation behind studying this topic, let me explain what I
mean by a model of Physical data. Any experiment may be broken up into
two procedures : preparations and measurements. One can think of this as
a list of instructions about the settings of a physical apparatus, as a black
box, with a knob on it that controls its settings. Two distinct knob settings
correspond to two distinct preparation procedures. This black box spits out
an object, that can be sent to another black box. The setting of the knob on
the second black box is a choice of measurement, one wants to perform on the
object prepared by the first box. The second box spits out an outcome, which
is recorded. This experiment is repeated several times, and the probability of
getting a measurement outcome for each preparation procedure is recorded
in a data table. A model for this data is a set of rules with which one can
reproduce the data table. Such a model could be as simple as “look up the
data table” or even “redo all the experiments”, however one might attempt
to come up with a model that could reproduce the outcome statistics more
efficiently.

For the purposes of these lectures, we will assume that the data table
is filled with probabilities predicted by quantum theory. Given such a data
table, one can use it to come up with a model to explain what might be
happening inside the black boxes. One model for such a data table is quantum
mechanics, where one can calculate the probabilities using the Born rule.
The reason for trying to come up with other models is two-fold. Firstly
using experimental data to understand more about a physical system is the
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very pursuit of Physics and such efforts have lead to our understanding of
the universe. The second reason is that one could hope to come up with a
model which could be used to predict the outcomes of a subset of experiments
without having to look it up in a very big data table. For example, we have
found certain sub-theories of Quantum mechanics, that is, data tables made
of a restricted set of preparation and measurement procedures, which can
be simulated efficiently using classical statistical models that do not require
explicitly calculating the Born rule. Thus, we know that, if one was to
spend billions of dollars building a device that could perform tasks, which
are impossible by any classical computer, then they would have to include
preparation and measurement procedures that lie strictly outside of these
sub-theories. Alternatively, general constraints on all models attempting
to reproduce a particular data table can be used to identify resources for
quantum computing or communication. Bell’s theorem is an example of such
a constraint. Given the data table of a set of preparations and measurements
with which one can violate a CHSH inequality, we know that no local model
could reproduce the data, thus we know that any device that can produce
such outcome statistics has an advantage over devices that are known to be
local. The Kochen-Specker theorem makes a similar type of statement about
constraints on models of quantum statistics and its link to computational
advantage of quantum devices is an area of active research.

All such models, can be studied under the framework of ontological mod-
els, without any loss of generality. I will therefore introduce this framework
in the next section, which will allow me to formalise the notion of prepa-
ration procedures, measurements and data tables. However, I will concen-
trate on a particular subset of models known as Epistemic models. I will
offer two examples of when a quantum sub-theory is reproduced using an
epistemic model; Epistemically restricted Liouville (ERL) mechanics, which
reproduces Gaussian quantum mechanics and the 8-state model, which repro-
duces the quantum stabilizer sub-theory for a single qubit. I shall then intro-
duce Kochen-Specker theorem and other forms of contextuality and briefly
talk about their implications on epistemic models and classical simulations
of quantum systems.

1.2 Ontological models framework

The ontological models framework provides a general framework to study all
models of quantum statistics under. It provides a useful way of studying
both hidden variable models and quantum simulation algorithms in a unified
framework. I will start by outlining the minimal requirements on models
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which reproduce quantum statistics which will give us the most general class
of ontological models and then proceed to classify different subclasses of such
models.

The first ingredient of an ontological model is a sample space Λ, the
elements of which represent the state of the physical system in the model. We
refer to Λ as the ontic space and λ ∈ Λ as an ontic state. One then defines
a probability measure µP : Λ → [0, 1] 1 for every preparation procedure
P . The only constraint on Λ is that it is measurable with respect to all
these measures.The standard interpretation of µP (λ) is the probability of
the ontic state of the system being λ given the system has been prepared
using preparation procedure P . Thus we require that∑

λ∈Λ

µP (λ) = 1 ∀P (1.1)

Since, µP is a probability distribution over the ontic states, it represents
our knowledge of the state of the system and thus is known as the epistemic
state of the system.

A function ξM,k : Λ→ [0, 1] is then defined for every outcome k of a mea-
surement M . This is the probability of getting outcome k for a measurement
M , given that the ontic state of the system is λ. Since, every measurement
outputs some outcome we require that∑

k

ξM,k(λ) = 1 ∀λ ∈ Λ (1.2)

This is called the indicator function. Now, the ontological model can be used
to calculate the probability of getting an outcome k given a measurement M
is carried out on a system prepared using preparation procedure P .

Pr(k|M,P ) =
∑
λ∈Λ

ξM,k(λ)µP (λ) (1.3)

Finally each measurement outcome may have an associated disturbance,
that is, may change the ontic state of the system. This is captured by a
function fM,k : Λ × Λ → [0, 1]. fM,k(λ

′, λ) is the probability of the ontic
state of the system being λ′ after a measurement M with outcome k given
its initial ontic state was λ. Since, we want to able to describe the state of

1µP : P(Λ) → [0, 1], where P(Λ) is the power set of Λ. However, in the interests
of those unfamiliar with measure theory, I have adopted the simpler albeit less rigorous
notation
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the system within the same model even after a measurement we require that∑
λ′

fM,k(λ
′, λ) = 1 (1.4)

Using this, one can update the epistemic state of the system too. Let P ′

be the preparation procedure, which is doing measurement M on a systems
prepared in P and post-selecting the system with outcome k. Then we can
describe the epistemic state of the system as

µP ′(λ
′) =

∑
λ∈Λ

fM,k(λ
′, λ)µP (λ) (1.5)

The left hand side of equation (1.3) is the experimental statistics that
one is trying to model. There might be several different models for the same
experimental statistics and the choice of a preferred model can depend on
what one wants to gain from modelling the statistics. For example, one
might want a model that has the most realistic ontology or one might just
want a model which describes the statistics in the most efficient manner,
by which I mean a model that has the smallest state space. The choice
of model can depend on whether one is looking to use it for explanatory
reasons or as a tool to simulate the statistics. In these notes, I will not assume
either motivation but just look at the different type of models that reproduce
quantum statistics. In order, for the ontological model to reproduce quantum
statistics, we require that the probabilities predicted by the ontological model
agree with quantum statistics. Thus we require that∑

λ∈Λ

ξM,k(λ)µP (λ) = Tr(M †
kMkρ) (1.6)

where Mk is the measurement operator used to describe the k outcome of a
measurement M in quantum mechanics and ρ is the quantum state of the
system after preparation procedure P . Since one would like to be able to
describe the system within the model even after a measurement, we require
that the epistemic state of the system is updated to one that corresponds to
the updated quantum state. By this I mean that if after the measurement,
the quantum state of the system is ρ′, then the epistemic state of the system
should be µP ′ where P ′ is a preparation procedure that is described by ρ′

within quantum theory.
These are the minimal requirements of any model that reproduces quan-

tum statistics. I will now present examples of such models, the first one being
quantum mechanics itself.

6



1.3 The Beltrametti-Bugaski Model

Quantum mechanics itself can be described within the ontological framework.
By this I mean that the state of the system in the model is the quantum
state, the indicator function is the Born rule and the state update rule is
the quantum measurement update rule. The ontic space in the model is
Λ = PH, the projective Hilbert space, that is each |ψ〉 ∈ H is represented by
|ψ〉〈ψ| ∈ PH in the model. The epistemic state of any preparation procedure
which prepares |ψ〉 is

µPψ(|λ〉〈λ|) := δ(|λ〉〈λ| − |ψ〉〈ψ|) (1.7)

The indicator function of a measurement M with outcome k is

ξM,k(|λ〉〈λ|) := Tr(M †
kMk|ψ〉〈ψ|) (1.8)

Lastly we have

fM,k := δ(
Mk|λ〉〈λ|M †

k

Tr(M †
kMk|λ〉〈λ|)

− |λ′〉〈λ′|) (1.9)

One can see that this model trivially satisfies the conditions for reproducing
quantum statistics. This is presented as an example to illustrate the gener-
ality of the ontological framework to include the interpretation of quantum
mechanics where the quantum state is considered to be the state of reality.

1.4 Types of Ontological Models

This section will briefly outline the different types of ontological models of
Quantum statistics. The aim of this section will be to acquaint the reader
with terminology used when talking about these models. The debate of
whether the quantum state described the real physical state of a system or
merely our knowledge of its physical state is one that has been central to the
study of foundations. One can begin to explore this within the the ontological
models framework, by first asking whether, the model with which we chose
to explain the statistics we see is a ψ-ontic model or a ψ-epistemic model.

We know that it is impossible to experimentally completely distinguish
two systems prepared using two distinct preparation procedures Pψ and Pφ,
preparations that prepare pure states |ψ〉 and |φ〉 respectively, if 〈ψ|φ〉 6= 0.
However, if we have access to multiple pairs of such systems, where each
pair consists of a system prepared using each preparation procedure, then
we can statistically distinguish between them. In other words, there is no
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single measurement that can distinguish two preparations procedures, which
correspond to two non-orthogonal pure states, however the two preparation
procedures can be distinguished by their measurement statistics. One in-
tuitive explanation for this indistinguishability is that perhaps Pψ and Pφ
represent two statistical distributions over the ontic space, which have some
overlap, that is, there exists some ontic state, which the system can end up in
after either preparation procedure, however the epistemic states correspond-
ing to the two preparation procedures are distinct. Such models are referred
to as ψ-epistemic models. A ψ-ontic model is one where all pure quantum
states have disjoint supports on the ontic space and thus the ontology does
not offer a similar intuitive explanation for the indistinguishability between
the quantum states.

Definition 1.4.1 An ontological model is ψ-Ontic iff for every pair of dis-
tinct pure quantum states |ψ〉 and |φ〉

Supp(µPψ) ∩ Supp(µPφ) = ∅. (1.10)

Definition 1.4.2 An ontological model is ψ-Epistemic iff there exists a pair
of distinct pure quantum states |ψ〉 and |φ〉, for which

Supp(µPψ) ∩ Supp(µPφ) 6= ∅. (1.11)

The next question, one might wish to ask is about the statistical nature
of measurements on pure states. By this, I mean that one cannot predict the
outcome of a measurement of an observable O on a system which has not been
prepared using a preparation consistent with an eigenstate of the Hermitian
operator used to describe O. One can only predict the probability of the
outcomes of such a measurement. This measurement indeterminism can be
attributed entirely to the lack of knowledge of the ontic state of the system.
Such is the case for outcome-deterministic models, where having access to
the ontic state of the system would allow one to predict the outcome to
a measurement of any observable. In outcome-indeterministic models, the
statistical nature of measurements is intrinsic and one cannot assign values
to all observables despite full knowledge of the ontic state of the system.

Definition 1.4.3 An ontological model is outcome-deterministic iff for every
projective measurement Mk

ξM,k : Λ→ {0, 1}. (1.12)
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Since,projective measurements in quantum mechanics correspond to sharp
measurements of observables (measurements with a certain outcome), one
can assign values to all observables given the ontic state of the system in an
outcome-deterministic model.

This concludes our brief classification of ontological models. This is by
no means an exhaustive classification, however it will be sufficient for our
discussion of ontological models in these lectures.
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Chapter 2

Epistemic Models

Epistemic models offer a very intuitive explanation to many features of quan-
tum mechanics such as the measurement collapse, the statistical nature of
quantum mechanics and indistinguishability between non-orthogonal states.
In a model, where the quantum state describes the observer’s state of knowl-
edge, one can see the measurement collapse as a Bayesian update rule that
we are used to from classical probabilistic models. This does away with the
measurement problem. However, there are enough no-go theorems to suggest
that an epistemic model of all of Quantum mechanics is unlikely. Despite this,
it forms an important tool in separating classical sub-theories from quantum
ones and provides a way of simulating certain quantum systems.

2.1 Wigner function

The Wigner representation offers a real phase-space representation of quan-
tum mechanics. Quantum states and measurements are represented by nor-
malised, real valued functions over phase-space. The only obstruction to
interpreting these real valued functions as probability distributions is that,
they can take negative values. This is why we refer to the Wigner rep-
resentation as a quasi-probability distribution. However, there exist a set
of preparations corresponding to pure quantum states which have a non-
negative Wigner representation . These states are called Gaussian states (as
their phase-space distribution is a Gaussian distribution). If we restrict to
the set of measurements, which map all Gaussian states to Gaussian states,
we find that the Wigner representation of these measurements is also non-
negative . This restricted set of preparations and measurements is known as
the Gaussian quantum sub-theory. Since the Wigner representation of this
sub-theory is real and non-negative, it can be used to construct an ontolog-
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ical model, which looks very similar to a classical statistical model, which
we shall get to in the next section. Now, lets start my formally defining the
Wigner representation.

A quantum state ρ describing an n-partite system is represented in the
Wigner representation as

Wρ(q,p) = Tr(ρA(q,p)) (2.1)

where

A(q,p) =
n⊗
i=1

A(qi,pi) (2.2)

and

A(qi,pi) =
1

2πh̄

∫
dy e−ipiy/h̄|qi −

1

2
y〉〈qi +

1

2
y|. (2.3)

A quantum measurement Mk is represented as

WMk
(q,p) = Tr(M †

kMkA(q,p)). (2.4)

Both these functions are normalised, that is,∫
dpdq Wρ(q,p) =

∫
dpdq WMk

(q,p) = 1. (2.5)

The probability of getting outcome Mk given preparation ρ is given my∫
dpdq Wρ(q,p)WMk

(q,p) = Tr(M †
kMkρ). (2.6)

One can see that Wρ and WMk
almost satisfy the conditions for the epis-

temic state and the indicator function over a canonical phase-space. The
only condition they do not satisfy is one of positivity.

2.2 Epistemically restricted Liouville (ERL)

Mechanics

This is the first example of an ψ-epistemic and outcome deterministic model
that reproduces the outcome statistics of Gaussian quantum mechanics. It is
an example of a sub-theory of quantum mechanics that can be explained using
classical probability distributions over states characterised by their position
and momentum and classical Hamiltonian dynamics. For details and a proof
of equivalence between ERL mechanics and Gaussian quantum mechanics
see 1.

1S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Phys. Rev. A 86, 012103 (2012)
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Lets start by defining the Gaussian sub-theory. It will be convenient to
represent a point in phase-space with a vector z, where zi = qi and z2i = pi,
where qi and pi are the ith position and momentum coordinates respectively
(this can be interpreted as the position and momentum of the ith particle
or the position and momentum of a single particle in the ith dimension) and
then define the operators ẑi = q̂i and ẑ2i = p̂i . The only preparation proce-
dures allowed with the Gaussian sub-theory are the ones that correspond to
quantum states ρ for which

Wρ(z) ∝ e−
1
2

(z−dρ)T γ−1
ρ (z−dρ) (2.7)

where dρi = 〈ẑi〉ρ is the vector of means of the ith coordinate and

γρij = 〈ẑiẑj + ẑj ẑi〉ρ − 2〈ẑi〉ρ〈ẑj〉ρ (2.8)

is the covariance matrix.
The only measurements allowed as the ones that take a system in a Gaus-

sian state to another Gaussian state. These set of measurements also have
Gaussian phase-space distribution, that is, for a POVM element Ek = M †

kMk

WEk(z) ∝ e
− 1

2
(z−dEk )T γ−1

Ek
(z−dEk )

(2.9)

For this restricted sets of preparations and measurements, the Wigner func-
tion is non-negative. Any projective measurement in this set must be a
measurement of a quadrature of position and momentum. Here, I will only
consider such measurements as any POVM can be implemented by a prob-
abilistic implementation of projective measurements.Let us now use this to
construct an ontological model.

A preparation that is described by ρ in quantum mechanics is represented
as a probability distribution over position-momentum space where the prob-
ability of the system having position within dq of q and dp of p is Wρ(z).
Thus the epistemic state is

µρ(z) = Wρ(z) (2.10)

It can be show that the classical covariance matrix defined as

γij = 2〈zizj〉 − 2〈zi〉〈zj〉 (2.11)

of µρ is equal to γρ.
Thus if ρ satisfies the generalised quantum uncertainty principle

γρ + ih̄Ω ≥ 0 (2.12)
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where

Ωij = δi,j+1 − δi+1,j (2.13)

then µρ will satisfy
γµ + ih̄Ω ≥ 0. (2.14)

Thus we know that for any allowed preparation we have a restriction on
our knowledge of the state. This restriction of our knowledge of the state
of the system given by (2.14) is called the Epistemic restriction. What is
rather interesting is that for the set of allowed measurements, this epistemic
restriction is preserved even if we consider classical Hamiltonian dynamics.
Which means that even if we assume classical dynamics, gaining information
about one observable will lead the loss of information about another observ-
able. However this kind of measurement disturbance is not surprising if one
considers the dynamics of a measurement procedure.

Consider a measurement on a single particle in one-dimension prepared
in a Gaussian state. The particle has a definite position qi and momentum
pi which completely characterises its physical state, exactly like in classical
mechanics. Let the observable being measured be an arbitrary quadrature
of position and momentum of the particle,

Oθ = cos θq + sin θp. (2.15)

In order to measure the particle, it must be coupled to a measurement
device. The standard way of doing this is coupling the particle to the pointer
of the measurement device such that the change in position of pointer gives us
the outcome of our measurement. This set up is simply described classically
by the Hamiltonian

H = χ(t)OθP (2.16)

where P is the observable representing the momentum of the device pointer
and ∫ t0

0

χ(t)dt = g (2.17)

where the measurement is performed in the time interval [0, t0]. The
measurement dynamics requires that we also consider the state of the mea-
surement device. Let the device pointer also be modelled as a particle with
position Qi and momentum Pi.
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The position and momentum of the particle and the device pointer change
according to the classical equations of motion following

dq

dt
=
∂H

∂p
(2.18)

and
dp

dt
= −∂H

∂q
(2.19)

Thus after the interaction with the measurement device, the position and
momentum of the particle is

q = qi + g sin θPi (2.20)

p = qi − g cos θPi (2.21)

and the position and momentum of the device pointer has changed to

Q = Qi + g(cos θq + sin θp) (2.22)

P = Pi (2.23)

Thus the position of the pointer changes proportional to the observable
Oθ which gives you the measurement outcome. However, we can see from
equations (2.20) and (2.21) that the position and momentum of the particle
changes too. This is the disturbance to the particle associated with the
measurement. This is completely classical measurement disturbance as we
have only considered the classical equations of motion of the particle and
the device pointer. Note that despite the change in the particle’s position
and momentum, the value of the observable that is being measured remains
unchanged:

Oθ(q, p) = cos θ(qi + g sin θPi) + sin θ(pi − g cos θPi)

= cos θqi + sin θpi

= Oθ(qi, pi)

(2.24)

We will discuss more about how one can determine which observable’s
value might be disturbed as a result of the measurement but first let us look
at what effect these dynamics have on the probability distributions of the
particle and the device that reflect our knowledge of their state. Since the
particle was prepared using an Gaussian preparation procedure, its epistemic
state (and quantum state) can be completely characterised by its covariance
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matrix and its mean position and momentum. In one-dimensional phase-
space, the covariance matrix of a particle is

γµ =

[
2∆q2 2〈qp〉 − 〈q〉〈p〉

2〈qp〉 − 〈q〉〈p〉 2∆p2

]
(2.25)

where ∆q2 and ∆p2 are the variance in the position and momentum of the
particle’s distribution and the off diagonal terms are the system’s covariance
which is essentially a measure of the correlation between the position and
momentum of the system. For simplicity, lets assume the particle is prepared
in a state where the off diagonals of the covariance matrix are zero. Thus
the distribution corresponding to the particle prior to the measurement is

µ(q, p) =
1

π
e
− (q−〈q〉)2

2∆q2
− (p−〈p〉)2

2∆p2 (2.26)

In order to stay within the sub-theory, we must also model our device
pointer in the same manner. Since the change in position of the device
pointer will give us our measurement outcome, it is convenient to have the
mean position and momentum of our device at zero. Thus the epistemic
state of the device pointer before the measurement is

ν(Q,P ) =
1

π
e
− Q2

2∆Q2−
P2

2∆P2 (2.27)

where ∆Q2 and ∆P 2 are the variance in the position and momentum of
the device pointer. In order to determine the outcome of the measurement
perfectly, we require that we know the initial position of the device pointer
with complete certainty. This means requiring ∆Q → 0. However, since we
only allow states that satisfy the uncertainty principle in equation (2.14), we
have ∆P →∞

After the measurement, due to the change in the position and momentum
of the particle, the epistemic state of the particle is shifted by the momentum
of the device pointer to

µ′(q, p) =

∫
dQdPµ(q + g sin θP, p− g cos θP )ν(Q− g(cos θq + sin θp), P )

(2.28)
Thus one can see that the more certainty that one tries to gain from the

measurement, the more disturbed the epistemic state of the particle becomes
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as in gaining precision in our knowledge of the measurement outcome, we
lose precision in our knowledge of how much the position and momentum
of the particle have been shifted by. On the other hand if one wants a
small disturbance to the state of the system, one would require that the
momentum of the device pointer is distributed tightly about zero, however
this would mean a large uncertainty in the position of the device pointer
and thus the measurement outcome would have a larger uncertainty. This
information-disturbance trade-off arises despite the dynamics of the systems
being completely classical purely from the epistemic restriction imposed on
the initial states of the system. In fact any Hamiltonian which is at most
quadratic in the canonical coordinates correspond to unitary transformations
that act linearly on the canonical coordinates. These are known as linear
symplectic transformations. They are the only transformations that map
Gaussian states to Gaussian states and they preserve the covariance matrix
and thus the total uncertainty in the system.

[Exercise 1:Write down the covariance matrix of the combined system of
the particle and device pointer in the above example before the measurement
interaction. Show the covariance matrix of the combined system stays the
same after the measurement by explicitly writing down the epistemic state of
the combined system after the measurement. Write down the mean position
and momentum of the particle and device pointer in terms of their initial
mean positions and momenta.]

The measurement disturbance puts a constraint on the sets of observables
that can be jointly measured, that is the measurement of one does not change
the value of the other. In quantum mechanics, two observables can be jointly
measured if they commute relative to their matrix commutator. In this
classical theory, two observables can be jointly measured if they commute
according to the Poisson bracket:

{O,A} :=
∑
i

(
∂O

∂qi

∂A

∂pi
− ∂O

∂pi

∂A

∂qi
) (2.29)

[Exercise 2: Show that the obervable Oθ commutes with the measure-
ment Hamiltonian in the above example. This is why its value remains
unchanged despite the measurement disturbance.]

Thus we can see that probability distributions over canonical position
and momentum evolving under classical equations of motion completely re-
produces the operational statistics of the Gaussian quantum sub-theory. This
tell us that if one was to try to build a quantum computer only using prepa-
rations and measurements from within this sub-theory, such a device would
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have no advantage over a classical device. Several phenomenon considered
”quantum” can also be reproduced within ERL mechanics such as the EPR
thought experiment, the no-cloning theorem and teleportation. This is de-
scribed in detail in 2

2.3 The 8-state model of Qubits

The most widely used set of states for quantum computation are the qubit
stabilizer states. The single qubit stabilizer sub-theory consists single-qubit
Pauli measurements, Clifford gates and states that can be prepared using
a circuit composed of these operations and classical post-processing. This
corresponds to 6 pure stabilizer states and measurement projectors

{|0〉〈0|, |1〉〈1|, |+〉〈+|, |−〉〈−|, |i〉〈i|, | − i〉〈−1|} (2.30)

and the single qubit Clifford unitaries which are generated by the Hadamard
and the Phase gates. The 8-state model is a simple classical probabilistic
model that reproduces all the outcome statistics of this sub-theory.

The sub-theory has 3 observables that are statistically independent, that
is,

Pr(oi|oj) = Pr(oi|oj, ok) = Pr(oi) i, j, k ∈ {1, 2, 3} (2.31)

where oi is the outcome of the ith Pauli observable. Since all the observable
have a binary outcome, this can be modelled classically as 3 independent
axes, each with two points. This gives us 8 possible value assignments. One
can think of this as the vertices of a cube where the vertex coordinates
(x, y, z) represent the values of the three observables. Thus the ontic states
are represented by 3 dimensional vectors are

Λ = {(x, y, z)|x, y, z ∈ {+1,−1}} (2.32)

An ±1 eigenstate of the observable corresponding to the ith coordinate
can then be represented by a uniform distribution over the 4 vertices on the
surface of the cube that correspond to the ith coordinate being ±1. Thus
the 6 stabilizer states are represented by uniform distributions over the 6
surfaces of a cube. For example, the preparation that corresponds to |0〉,
the +1 eigenstate of Z is represented as a uniform distribution over the 4
vertices {(x, y, 1)}.

A measurement of an observable simply reveals the value of the coordi-
nate corresponding to that observable. A measurement also has an associated

2S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Phys. Rev. A 86, 012103 (2012).
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disturbance which is that it randomizes the value of the other two coordi-
nates. Here is a simple example of how this simple model reproduces the
statistics of the single qubit stabilizer sub-theory. Let us consider the prepa-
ration where one measures the observable X and selects the +1 outcome.
This is described by |+〉 in quantum mechanics. In the classical model, this
corresponds to knowing the value of the x coordinate of the system. Thus
the epistemic state is a uniform distribution over the 4 vertices that lie on
the x = 1 surface of the cube, which means that the system could be in any
of the 4 ontic states but we have no knowledge of which one it is in. Now if
I chose to measure Z, I have equal probability of getting ±1 as exactly half
of the vertices of that plain have the z-coordinate value ±1. Now imagine
the measurement of Z give outcome +1, we know that the ontic state is now
one with +1 z-coordinate, however due to the measurement disturbance, we
know longer know the value of its x-coordinate. So again our epistemic state
is a uniform distribution over 4 vertices, which now all lie on the z = +1
surface of the cube. This is the distribution that represents the |0〉 state,
which is what one expects.

The Hadamard and Phase gates are represented as follows

H : Λ→ Λ

H(x, y, z) = (z,−y, x)
(2.33)

P : Λ→ Λ

P (x, y, z) = (−y, x, z)
(2.34)

and the 24 single-qubit clifford gates are given by the 24 rotational sym-
metries of a cube.

[Exercise 3: Write down the epistemic state for each quantum stabilizer
state and show how they are updated after a Hadamard gate. Check that
the epistemic state at the end corresponds to the quantum stabilizer state
one expects to get after applying the Hadamard unitary.]

This is another example of how lack of knowledge and measurement dis-
turbance can reproduce a quantum sub-theory in a model where physical
systems have well defined values of observables at all times.

18



Chapter 3

Contextuality

In the previous chapter, we saw that there are sub-theories of quantum me-
chanics that can be explained perfectly well by stochastic models with clas-
sical dynamics where all the indistinguishablity of the quantum states was
explained by the overlap between probability distributions corresponding to
the quantum states. Such models however can only be constructed in the
absence of Contextuality. In this chapter, I shall introduce two notions of
contextuality and briefly outline the difficulty it poses towards constructing
epistemic models.

3.1 Kochen-Specker Contextuality

The two examples of epistemic models in these notes both have the nice
feature that the quantum state can be described as the state of the observer’s
knowledge about a system with well defined physical properties. I am sure,
one would agree that this is a much more intuitive picture of reality than
the one assumed by the orthodox view of quantum mechanics, which is that,
a system does not have well defined values of observables until they are
measured. So why do we not interpret all of quantum mechanics in the more
intuitive way? The reason for this is that in certain cases, there exists no way
of assigning values to set of observables simultaneously, such that quantum
statistics are reproduced.

If O is an observable, whose outcome can be described using projectors of
rank ≥ 2, then it is possible to infer the outcome of O in several distinct ways
by measuring commuting sets of observables. The different ways in which
a projector of O can be decomposed into sums of projectors of mutually
commuting observables give us the different measurements one can do to
infer a particular outcome of O. For example, the value of the observable
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Y Y can be inferred in three different ways using the following relationships:

Y Y = Y1.Y2 (3.1)

Y Y = (XZ).(ZX) (3.2)

Y Y = −(XX).(ZZ) (3.3)

[Exercise 4: Show that the rank 2 projectors corresponding to the outcomes
of Y Y can be decomposed into rank 1 projectors in three different ways
corresponding to (3.1)-(3.3)]

Thus using (3.1)-(3.3) the value of Y Y can be determined using three
different types of experiments,the first, where you measure the Y observable
on each of the two qubits, and the other two involve doing two non-local mea-
surements on the system of two qubits. The measurements differ in the set
of observables commuting with Y Y , whose values are known in the process,
we say that these three distinct measurements correspond to three different
contexts of measuring the observable Y Y . One can define a Context of O as
a set of observables containing O,where each element of the set commutes
with every other element in the set. each of these sets corresponds to a set of
observables whose outcomes can be determined simultaneously. If two mea-
surement procedures informing us of the outcome of an observable O, differ
in the set of observables commuting with O, whose outcomes they reveal,
then we say the two measurements measure O in two different contexts.

It is possible to construct sets of observables such that there is no possible
way of simultaneously assigning values to the observables without violating
the relationship between observables as predicted by quantum mechanics in
a particular context. For example, according to quantum theory

(ZZZ).(ZXX).(XZX).(XXZ) = −1. (3.4)

Now consider the local context of each of the observables in (3.4), that is

ZZZ = Z1.Z2.Z3, (3.5)

ZXX = Z1.X2.X3, (3.6)

XZX = X1.Z2.X3, (3.7)

XXZ = X1.X2.Z3. (3.8)
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Multiplying the equations (3.5)-(3.6), we see that each local X and Z observ-
able appears exactly twice in the product on the right hand side and thus,
there is no possible assignment of values to the local observables such that
(3.4) is satisfied. Thus if one tries to predict the values of all these observ-
ables simultaneously, there is always a measurement that can be performed
which will be at odds with the prediction.

Definition 3.1.1 A non-contextual value assignment for a set of observables
O = {Oi|i = 1, ..n} is a function ν : O → R such that ν(Oi) is an eigenvalue
of the hermitian operator describing Oj and ν(OiOj) = ν(Oi)ν(Oj) if Oi and
Oj commute.

A proof of contextuality is one where it is possible to show that for a set
of observables there exists no non-contextual value assignment.

Definition 3.1.2 A measurement non-contextual model is one for which

ξM,k(λ) = ξπk(λ) (3.9)

for any measurement M whose kth outcome is described as the projector
πk in quantum mechanics.

So what is the implication of a proof of contextuality on an ontological
model? A little thought reveals that a proof of contextuality rules out non-
contextual models which are outcome deterministic. This is simple to see
if one considers that in an outcome deterministic model, knowing λ tells
you the outcome for all possible measurements and if the model is also non-
contextual then all measurements, whose outcomes correspond to the same
projectors are represented by the same indicator function, which implies a
non-contextual value assignment. So a proof of contextuality rules out any
model for which

ξM,k(λ) = ξπk(λ), ξπk(λ) ∈ {0, 1} (3.10)

Note that if one gets rid out outcome determinism, then a proof of the im-
possibility of a non-contextual value assignment (proof of contextuality) does
not rule out non-contextual models. A simple example is quantum mechanics
itself (Beltramati-Bugaski). One can see that it satisfies the condition for a
measurement non-contextual model trivially.
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3.2 Generalised (Spekkens) Contextuality

In 1, a more generalised notion of contextuality was introduced. The notion of
contextuality was developed for preparations, transformations and un-sharp
measurements. Just like observable outcomes described by projectors with
rank ≥ 2 can be decomposed in multiple ways, similarly density matrices
with rank ≥ 2 can also be decomposed into lower rank density matrices
in multiple ways. These higher rank density matrices correspond to mixed
states and their decomposition into rank 1 density matrices correspond to
the particular mixture over the pure states represented by the rank 1 density
matrices. Let me illustrate this with the following example:

Consider the pure states

ρa =

[
1 0
0 0

]
ρA =

[
0 0
0 1

]
ρb = 1

4

[
1
√

3√
3 3

]
ρB = 1

4

[
3 −

√
3

−
√

3 1

]
ρc = 1

4

[
1 −

√
3

−
√

3 3

]
ρC = 1

4

[
3
√

3√
3 1

]
(3.11)
The single qubit maximally mixed state is represented as ρ = I

2
can be

decomposed into sums of these states as follows

1R. W. Spekkens, Phys. Rev. A 71, 052108 (2005)
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I

2
=

1

2
(ρa + ρA)

=
1

2
(ρb + ρB)

=
1

2
(ρc + ρC)

=
1

3
(ρa + ρb + ρc)

=
1

3
(ρA + ρB + ρC)

(3.12)

The different decompositions correspond to different ways of preparing
the maximally mixed state. For instant the first decomposition implies that
it is possible to prepare the maximally mixed by sampling from a uniform
distribution of pure states ρa and ρA but one can also prepare the maximally
mixed state by sampling from a uniform distribution of pure state ρA ,ρB
and ρC according to the last decomposition. This motivates a definition of
preparation non-contextuality.

Definition 3.2.1 A preparation non-contextual model is one where

µP (λ) = µρ(λ) (3.13)

for any preparation P that prepares a state described as ρ.

We can use the above example of the maximally mixed state to see how
such a preparation non-contextual model is not possible. We start by noting
that the supports of orthogonal states must be disjoint and so

µρa(λ)µρA(λ) = 0

µρb(λ)µρB(λ) = 0

µρc(λ)µρC (λ) = 0

(3.14)

and for a preparation non-contextual model since all preparation pro-
cedures that prepare the same ρ must be represented the same we require
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that

µ I
2

=
1

2
(µρa + µρA)

=
1

2
(µρb + µρB)

=
1

2
(µρc + µρC )

=
1

3
(µρa + µρb + µρc)

=
1

3
(µρA + µρB + µρC )

(3.15)

and one can see the only solution to equation 3.14 and 3.15 is µa, µA..µC =
0. And since this applies to all λ ∈ Λ, we can see that such a preparation
contextual model is not possible.

Similarly, a more generalised notion of measurement non-contextuality
is also developed, which takes the previously introduces measurement non-
contextuality and generalises it to more general measurements described as
POVMs in quantum theory.

Definition 3.2.2 A measurement non-contextual model is one where

ξM,k(λ) = ξEk(λ) (3.16)

for any measurement M whose kth outcome is described as the POVM
element Ek in quantum mechanics.

Thus this is a notion of measurement non-contextuality which is strictly
stronger than the measurement non-contextuality introduced in the previous
section.
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