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Kochen-Specker contextuality

Some quantum statistics are incompatible with X
@ deterministic assignments of values to all the
observables
@ satisfying the compatibility relations inherited
from quantum mechanics
(or mixtures of these models.) a
p(alx) , (x)
A Non-contextual, deterministic,
~——p(alA) p(alA)— hidden-variable model:

p(ab|AB) p(ac|AC)
A: p(alA,N) € {0,1}.
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A1
As
Non-contextual hidden variable model
(deterministic): A : A; — %1
A
? Distribution over hidden variables: p(\)
As
Az

K= <A1 A2> + <A2 A3> + <A3 A4> + <A4 A5> =+ <A5 A1> NCZHV -3

NCHV —  min ajax + axas + asas + aszas + asax
st a =41 Vi.
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KCBS: quantum violation

Ar = 2|vie) (w| — 1
Vi

K =5 — 4/5 ~ —3.94427

Quantum mechanics violates the KCBS inequality
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Peres-Mermin square: nine observables {A, B, C, a, b, ¢, o, 8,7}

A=0,R®1 B=1®o, | C=0,R0, | 1
a=1Q®ox b=0x®1 c=0x®ox | 1
a=0;Q0x ﬁ:Ux®0-z ’Y:Uy®0‘y 1

1 1 1

K = (ABC) + (abc) + (aBv) + (Aaa) + (BbS) — (Ccr) s 6

(ABC) + (abc) + (aBv) + (Aaa) + (BbS) — (Ccy) < 4

Quantum mechanics violates the inequality for all quantum states.
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Inequalities from hypergraphs

Cabello, Severini and Winter —  inequalities from the compatibility
structure of events

What is an event? —  measured context and obtained outcomes

Example: KCBS

{(ai, air1]Ai, Aisr) | @i @i = £1,1 < i < 5}
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KCBS: second formulation

Five yes/no questions: {P;, 1 < <5},
@ P; and P;;1 are compatible,

@ P; and Pi;; are exclusive. That is,
they can't be both simultaneously
answered with ‘yes’.

Py

What is the maximum number of
‘yes’ that we can obtain?

‘ves'— 1, ‘'no’— 0,

Z?:l(Pi> < 2.

First formulation of KCBS?

A,':QP,‘—]., =

(AiAisi) = =2(P;) —

2<Pi+1> + 17

S (A ALY > 3.

NCHV
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KCBS — Inequalities from graphs

Graph:
@ Vertices: Events of the scenario. 5
{(0IP:), (1[Pi)}i > ai p(1|P:) + Bi p(0|P;) NCSHV?
@ Edges: join exclusive events

Equip the graph'’s vertices with weights (G, w):  wp,) = ai, Wop;) = Bi

The NCHV bound is given by the weighted independence number of
(G,w): «

Example: aj =1, B =0

(1]P1)
(1]Ps Independence number of the pentagon:
a=2
(11P2)
5
> (P < 2
(1|Ps i (P NCHV

(1]Ps)
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Quantum violation?

Weighted Lovdsz number of (G, w): ¥(G, w)

“Orthogonal representation”: |W), {|¢v)}y
@ unit vectors HG,w) = ZVEV w(v) |<¢v|\|’>|2~
@ (dv|pu) =0ifu TV

If |W) — quantum state, |¢,)(¢,| — projector associated to answer v:
quantum correlations!

Example: KCBS

@ I(G,w) =+5>2
>y
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Bell scenarios: CHSH

Bl A2
Compatible measurements: {A;, B;j}

Events: {(ab|xy) : a,b,x,y =0,1
Al B, {(ablxy) y }

Local Orthogonality: two events are orthogonal if there is a party that has
chosen the same measurement in both, but obtained different outcomes.

Example: (00/00) L (10|01) but (00|00) £ (01|01).
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Bell scenarios: CHSH

(00/00) (01]00) (00o1) (0101)

N =

(10/00) (11|00)(10|o1) 11]01)
(K (K
(0010)01|10)(00|11 (01]11)
PP

(10]10) (11]10) (10]11) (11]11)

CHSH inequality:

> a» p(abl00) +3° 2o p(ab|10) + 3 a p(ablOL) 4 - ap p(abl1l) < 3
a=b a=b a=b a#b NCHV

Equip the graph with weights: w(ab|xy) = dagb=xy



Bell scenarios: CHSH

(00[00)

(00/10) (00/01)
Eight-vertex circulant (1,4) graph:
Cig(1,4)
(01]11) (10]11)
a(G,w) =3, 9(G,w)=2++2
(11]01) (11]10)

(11]00)
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CSW: limitations

For Bell scenarios, ¥(G, w) is only an upper bound to Tsirelson’s bound.

A true quantum model in a Bell scenario must satisfy the following constraints:

(i) Normalisation of probabilities: 3, _. [(¢v|W)|> = 1, for every complete
measurement e.
Example: e = {(ab|xy) : a,b=10,1}

(ii)) Normalisation of the von Neumann measurements: > . |¢v){év| = 1,
for every complete measurement e.

Example: 322 Bell inequality.
@ (G, w) ~ 0.4114
@ ¥(G,w) constrained via (i): bound= 0.25147
@ quantum bound< 0.2508755
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