Kochen-Specker contextuality Lecture 1 Ana Belén Sainz Solstice of Foundations summer school – ETH Zurich 19/06/2017 Some quantum statistics are incompatible with - deterministic assignments of values to all the observables - satisfying the compatibility relations inherited from quantum mechanics Some quantum statistics are incompatible with - deterministic assignments of values to all the observables - satisfying the compatibility relations inherited from quantum mechanics Some quantum statistics are incompatible with - deterministic assignments of values to all the observables - satisfying the compatibility relations inherited from quantum mechanics Some quantum statistics are incompatible with - deterministic assignments of values to all the observables - satisfying the compatibility relations inherited from quantum mechanics Some quantum statistics are incompatible with - deterministic assignments of values to all the observables - satisfying the compatibility relations inherited from quantum mechanics (or mixtures of these models.) Non-contextual, deterministic, hidden-variable model: $$\Lambda \colon \, p(a|A\,,\Lambda) \in \{0,1\}.$$ Non-contextual hidden variable model (deterministic): $\lambda:A_i\to\pm 1$ Non-contextual hidden variable model (deterministic): $\lambda: A_i \to \pm 1$ $$\textit{K} = \left<\textit{A}_{1}\,\textit{A}_{2}\right> + \left<\textit{A}_{2}\,\textit{A}_{3}\right> + \left<\textit{A}_{3}\,\textit{A}_{4}\right> + \left<\textit{A}_{4}\,\textit{A}_{5}\right> + \left<\textit{A}_{5}\,\textit{A}_{1}\right>$$ Non-contextual hidden variable model (deterministic): $\lambda:A_i\to\pm 1$ $$\textit{K} = \left<\textit{A}_{1}\,\textit{A}_{2}\right> + \left<\textit{A}_{2}\,\textit{A}_{3}\right> + \left<\textit{A}_{3}\,\textit{A}_{4}\right> + \left<\textit{A}_{4}\,\textit{A}_{5}\right> + \left<\textit{A}_{5}\,\textit{A}_{1}\right>$$ NCHV $$\rightarrow$$ min $a_1 a_2 + a_2 a_3 + a_3 a_4 + a_4 a_5 + a_5 a_1$ st $a_i = \pm 1 \quad \forall i$. Non-contextual hidden variable model (deterministic): $\lambda:A_i\to\pm 1$ $$K = \langle \textit{A}_{1}\,\textit{A}_{2}\rangle + \langle \textit{A}_{2}\,\textit{A}_{3}\rangle + \langle \textit{A}_{3}\,\textit{A}_{4}\rangle + \langle \textit{A}_{4}\,\textit{A}_{5}\rangle + \langle \textit{A}_{5}\,\textit{A}_{1}\rangle \underset{NCHV}{\geq} -3$$ NCHV $$\rightarrow$$ min $a_1 a_2 + a_2 a_3 + a_3 a_4 + a_4 a_5 + a_5 a_1$ st $a_i = \pm 1 \quad \forall i$. # KCBS: quantum violation # KCBS: quantum violation $$A_k = 2|v_k\rangle\langle v_k| - 1$$ ## **KCBS**: quantum violation Quantum mechanics violates the KCBS inequality | $A = \sigma_z \otimes 1$ | $B=\mathbb{1}\otimes\sigma_z$ | $C = \sigma_z \otimes \sigma_z$ | |---|--|---| | $a=1\otimes\sigma_{\scriptscriptstyle X}$ | $b = \sigma_{\scriptscriptstyle X} \otimes \mathbb{1}$ | $c = \sigma_{\scriptscriptstyle X} \otimes \sigma_{\scriptscriptstyle X}$ | | $\alpha = \sigma_{z} \otimes \sigma_{x}$ | $\beta = \sigma_{x} \otimes \sigma_{z}$ | $\gamma = \sigma_{y} \otimes \sigma_{y}$ | | $A = \sigma_z \otimes \mathbb{1}$ | $B = \mathbb{1} \otimes \sigma_z$ | $C = \sigma_z \otimes \sigma_z$ | 1 | |---|--|---|---| | $a=1\otimes\sigma_{\scriptscriptstyle X}$ | $b = \sigma_{\scriptscriptstyle X} \otimes \mathbb{1}$ | $c = \sigma_{\scriptscriptstyle X} \otimes \sigma_{\scriptscriptstyle X}$ | 1 | | $\alpha = \sigma_{z} \otimes \sigma_{x}$ | $\beta = \sigma_{x} \otimes \sigma_{z}$ | $\gamma = \sigma_{y} \otimes \sigma_{y}$ | 1 | | 1 | 1 | -1 | | | $A = \sigma_z \otimes \mathbb{1}$ | $B=\mathbb{1}\otimes\sigma_z$ | $C = \sigma_z \otimes \sigma_z$ | 1 | |---|---|---|---| | $a=1\otimes\sigma_{\scriptscriptstyle X}$ | ^ - | $c = \sigma_{\scriptscriptstyle X} \otimes \sigma_{\scriptscriptstyle X}$ | 1 | | $\alpha = \sigma_{z} \otimes \sigma_{x}$ | $\beta = \sigma_{x} \otimes \sigma_{z}$ | $\gamma = \sigma_y \otimes \sigma_y$ | 1 | | 1 | 1 | -1 | | $$\textit{K} = \langle \textit{ABC} \rangle + \langle \textit{abc} \rangle + \langle \alpha \beta \gamma \rangle + \langle \textit{Aa}\alpha \rangle + \langle \textit{Bb}\beta \rangle - \langle \textit{Cc}\gamma \rangle \underset{\text{QM}}{\equiv} 6$$ | $A = \sigma_z \otimes \mathbb{1}$ | $B=\mathbb{1}\otimes\sigma_{z}$ | $C = \sigma_z \otimes \sigma_z$ | 1 | |---|--|---|---| | $a=1\otimes\sigma_{\scriptscriptstyle X}$ | $b = \sigma_{\scriptscriptstyle X} \otimes \mathbb{1}$ | $c = \sigma_{\scriptscriptstyle X} \otimes \sigma_{\scriptscriptstyle X}$ | 1 | | $\alpha = \sigma_{z} \otimes \sigma_{x}$ | $\beta = \sigma_{x} \otimes \sigma_{z}$ | $\gamma = \sigma_y \otimes \sigma_y$ | 1 | | 1 | 1 | -1 | | $$\textit{K} = \langle \textit{ABC} \rangle + \langle \textit{abc} \rangle + \langle \alpha \beta \gamma \rangle + \langle \textit{Aa}\alpha \rangle + \langle \textit{Bb}\beta \rangle - \langle \textit{Cc}\gamma \rangle \underset{\text{QM}}{\equiv} 6$$ $$\langle ABC \rangle + \langle abc \rangle + \langle \alpha \beta \gamma \rangle + \langle Aa\alpha \rangle + \langle Bb\beta \rangle - \langle Cc\gamma \rangle \underset{\text{NCHV}}{\leq} 4$$ Peres-Mermin square: nine observables $\{A,B,C,a,b,c,\alpha,\beta,\gamma\}$ | $A = \sigma_z \otimes \mathbb{1}$ | $B=1\otimes\sigma_z$ | $C = \sigma_z \otimes \sigma_z$ | 1 | |---|--|---|---| | $a=1\otimes\sigma_{\scriptscriptstyle X}$ | $b = \sigma_{\scriptscriptstyle X} \otimes \mathbb{1}$ | $c = \sigma_{\scriptscriptstyle X} \otimes \sigma_{\scriptscriptstyle X}$ | 1 | | $\alpha = \sigma_{z} \otimes \sigma_{x}$ | $\beta = \sigma_{x} \otimes \sigma_{z}$ | $\gamma = \sigma_{y} \otimes \sigma_{y}$ | 1 | | 1 | 1 | -1 | | $$\textit{K} = \langle \textit{ABC} \rangle + \langle \textit{abc} \rangle + \langle \alpha \beta \gamma \rangle + \langle \textit{Aa} \alpha \rangle + \langle \textit{Bb} \beta \rangle - \langle \textit{Cc} \gamma \rangle \underset{\text{QM}}{\equiv} 6$$ $$\langle ABC \rangle + \langle abc \rangle + \langle \alpha\beta\gamma \rangle + \langle Aa\alpha \rangle + \langle Bb\beta \rangle - \langle Cc\gamma \rangle \underset{\mathsf{NCHV}}{\leq} 4$$ Quantum mechanics violates the inequality for all quantum states. Cabello, Severini and Winter \rightarrow inequalities from the compatibility structure of events Cabello, Severini and Winter \rightarrow inequalities from the compatibility structure of events What is an event? Cabello, Severini and Winter \rightarrow inequalities from the compatibility structure of events What is an event? \rightarrow measured context and obtained outcomes Cabello, Severini and Winter $\ \rightarrow \$ inequalities from the compatibility structure of events What is an event? \rightarrow measured context and obtained outcomes Example: KCBS $$\{(a_i, a_{i+1}|A_i, A_{i+1}) \mid a_i, a_{i+1} = \pm 1, \ 1 \le i \le 5\}$$ Five yes/no questions: $\{P_i, 1 \le i \le 5\}$, - P_i and P_{i+1} are compatible, - P_i and P_{i+1} are exclusive. That is, they can't be both simultaneously answered with 'yes'. Five yes/no questions: $\{P_i, 1 \le i \le 5\}$, - P_i and P_{i+1} are compatible, - P_i and P_{i+1} are exclusive. That is, they can't be both simultaneously answered with 'yes'. Five yes/no questions: $\{P_i, 1 \le i \le 5\}$, - P_i and P_{i+1} are compatible, - P_i and P_{i+1} are exclusive. That is, they can't be both simultaneously answered with 'yes'. Five yes/no questions: $\{P_i, 1 \le i \le 5\}$, - P_i and P_{i+1} are compatible, - P_i and P_{i+1} are exclusive. That is, they can't be both simultaneously answered with 'yes'. Five yes/no questions: $\{P_i, 1 \le i \le 5\}$, - P_i and P_{i+1} are compatible, - P_i and P_{i+1} are exclusive. That is, they can't be both simultaneously answered with 'yes'. Five yes/no questions: $\{P_i, 1 \le i \le 5\}$, - P_i and P_{i+1} are compatible, - P_i and P_{i+1} are exclusive. That is, they can't be both simultaneously answered with 'yes'. Five yes/no questions: $\{P_i, 1 \le i \le 5\}$, - P_i and P_{i+1} are compatible, - P_i and P_{i+1} are exclusive. That is, they can't be both simultaneously answered with 'yes'. 'yes' $$o 1$$, 'no' $o 0$, $$\sum_{i=1}^5 \langle P_i \rangle \mathop{<}_{\rm NCHV} 2 \, .$$ Five yes/no questions: $\{P_i, 1 \le i \le 5\}$, - P_i and P_{i+1} are compatible, - P_i and P_{i+1} are exclusive. That is, they can't be both simultaneously answered with 'yes'. What is the maximum number of 'yes' that we can obtain? 'yes' $$ightarrow$$ 1, 'no' $ightarrow$ 0, $$\sum_{i=1}^5 \langle P_i \rangle \underset{\mathsf{NCHV}}{\leq} 2 \, .$$ First formulation of KCBS? $$\begin{split} A_i &= 2P_i - 1\,, \quad \Rightarrow \quad \langle A_i A_{i+i} \rangle = -2 \langle P_i \rangle - 2 \langle P_{i+1} \rangle + 1\,, \\ &\qquad \qquad \sum_i \langle A_i \, A_{i+1} \rangle \underset{\mathsf{NCHV}}{\geq} - 3\,. \end{split}$$ #### Graph: • Vertices: Events of the scenario. $\{(0|P_i), (1|P_i)\}_i$ • Edges: join exclusive events #### Graph: • Vertices: Events of the scenario. $\{(0|P_i), (1|P_i)\}_i$ $$\sum_{i=1}^{5} \alpha_i \, p(1|P_i) + \beta_i \, p(0|P_i) \leq$$ Edges: join exclusive events #### Graph: • Vertices: Events of the scenario. $\{(0|P_i), (1|P_i)\}_i \qquad \sum_{i=1}^5 \alpha_i \, p(1|P_i) + \beta_i \, p(0|P_i) \overset{<}{\leq} ?$ Edges: join exclusive events Equip the graph's vertices with weights (G, w): $w_{(1|P_i)} = \alpha_i$, $w_{(0|P_i)} = \beta_i$ #### Graph: - Vertices: Events of the scenario. $\{(0|P_i), (1|P_i)\}_i \qquad \qquad \sum_{i=1}^5 \alpha_i \, p(1|P_i) + \beta_i \, p(0|P_i) \underset{\mathsf{NCHV}}{\leq} ?$ - Edges: join exclusive events Equip the graph's vertices with weights (G, w): $w_{(1|P_i)} = \alpha_i$, $w_{(0|P_i)} = \beta_i$ The NCHV bound is given by the weighted independence number of (G, w): α #### Graph: • Vertices: Events of the scenario. $\{(0|P_i), (1|P_i)\}_i$ $$\sum_{i=1}^{5} \alpha_i \, p(1|P_i) + \beta_i \, p(0|P_i) \leq$$ Edges: join exclusive events Equip the graph's vertices with weights (G, w): $w_{(1|P_i)} = \alpha_i$, $w_{(0|P_i)} = \beta_i$ The NCHV bound is given by the weighted independence number of (G, w): α Example: $\alpha_i = 1$, $\beta_i = 0$ #### Graph: • Vertices: Events of the scenario. $\{(0|P_i), (1|P_i)\}_i$ $\sum_{i=1}^{5} \alpha_i \, p(1|P_i) + \beta_i \, p(0|P_i) \leq$ Edges: join exclusive events Equip the graph's vertices with weights (G, w): $w_{(1|P_i)} = \alpha_i$, $w_{(0|P_i)} = \beta_i$ The NCHV bound is given by the weighted independence number of (G, w): α Example: $\alpha_i = 1$, $\beta_i = 0$ Independence number of the pentagon: $$\alpha = 2$$ $$\sum_{i=1}^{5} \langle P_i \rangle \leq 2$$. Quantum violation? Weighted Lovász number of (G, w): $\vartheta(G, w)$ Quantum violation? Weighted Lovász number of (G, w): $\vartheta(G, w)$ "Orthogonal representation": $|\Psi\rangle$, $\{|\phi_{\nu}\rangle\}_{\nu}$ unit vectors $\vartheta(G, w) = \sum_{v \in V} w(v) |\langle \phi_v | \Psi \rangle|^2$. Quantum violation? Weighted Lovász number of (G, w): $\vartheta(G, w)$ "Orthogonal representation": $|\Psi\rangle$, $\{|\phi_{\nu}\rangle\}_{\nu}$ unit vectors $\vartheta(G, w) = \sum_{v \in V} w(v) |\langle \phi_v | \Psi \rangle|^2$. If $|\Psi angle o$ quantum state, $|\phi_v angle\langle\phi_v| o$ projector associated to answer v: quantum correlations! Quantum violation? Weighted Lovász number of (G, w): $\vartheta(G, w)$ "Orthogonal representation": $|\Psi\rangle$, $\{|\phi_{\nu}\rangle\}_{\nu}$ unit vectors $\vartheta(G, w) = \sum_{v \in V} w(v) |\langle \phi_v | \Psi \rangle|^2$. If $|\Psi angle o$ quantum state, $|\phi_{v}\rangle\langle\phi_{v}|$ o projector associated to answer v: quantum correlations! Example: KCBS $$\vartheta(G, w) = \sqrt{5} > 2$$ Compatible measurements: $\{A_i, B_j\}$ Compatible measurements: $\{A_i, B_j\}$ Events: $\{(ab|xy) : a, b, x, y = 0, 1\}$ Local Orthogonality: two events are orthogonal if there is a party that has chosen the same measurement in both, but obtained different outcomes. Example: $(00|00) \perp (10|01)$ but $(00|00) \not\perp (01|01)$. #### CHSH inequality: $$\textstyle \sum_{\substack{ab\\a=b}} p(ab|00) + \sum_{\substack{ab\\a=b}} p(ab|10) + \sum_{\substack{ab\\a=b}} p(ab|01) + \sum_{\substack{ab\\a\neq b}} p(ab|11) \leq NCHV 3$$ #### CHSH inequality: $$\textstyle \sum_{\substack{ab\\a=b}} p(ab|00) + \sum_{\substack{ab\\a=b}} p(ab|10) + \sum_{\substack{ab\\a=b}} p(ab|01) + \sum_{\substack{ab\\a\neq b}} p(ab|11) \underset{\mathsf{NCHV}}{\leq} 3$$ Equip the graph with weights: $w(ab|xy) = \delta_{a \oplus b = xy}$ Eight-vertex circulant (1,4) graph: $Ci_8(1,4)$ $$\alpha(\textit{G},\textit{w}) = 3$$, $\vartheta(\textit{G},\textit{w}) = 2 + \sqrt{2}$ #### **CSW:** limitations For Bell scenarios, $\vartheta(G,w)$ is only an upper bound to Tsirelson's bound. #### **CSW:** limitations For Bell scenarios, $\vartheta(G, w)$ is only an upper bound to Tsirelson's bound. A true quantum model in a Bell scenario must satisfy the following constraints: - (i) Normalisation of probabilities: $\sum_{v \in e} |\langle \phi_v | \Psi \rangle|^2 = 1$, for every complete measurement e. Example: $e = \{(ab|xy): a, b = 0, 1\}$ - (ii) Normalisation of the von Neumann measurements: $\sum_{v \in e} |\phi_v\rangle \langle \phi_v| = \mathbb{1}$, for every complete measurement e. #### **CSW: limitations** For Bell scenarios, $\vartheta(G, w)$ is only an upper bound to Tsirelson's bound. A true quantum model in a Bell scenario must satisfy the following constraints: - (i) Normalisation of probabilities: $\sum_{v \in e} |\langle \phi_v | \Psi \rangle|^2 = 1$, for every complete measurement e. Example: $e = \{(ab|xy): a, b = 0, 1\}$ - (ii) Normalisation of the von Neumann measurements: $\sum_{v \in e} |\phi_v\rangle \langle \phi_v| = \mathbb{1}$, for every complete measurement e. Example: I_{3322} Bell inequality. - $\vartheta(G, w) \sim 0.4114$ - $\vartheta(G, w)$ constrained via (i): bound= 0.25147 - quantum bound < 0.2508755 ## Summary of today - Kochen-Specker contextuality Kochen and E. P. Specker, J. Math. Mech. 17, 59 (1967). - KCBS example A. A. Klyachko, M. A. Can, S. Binicioğlu, and A. S. Shumovsky, Phys. Rev. Lett. 101, 020403 (2008). - State-independent contextuality N.D.Mermin, Phys.Rev.Lett. 65, 3373-6 (1990). A.Peres, Phys. Lett. A 151, 107-8 (1990). - Inequalities from hypergarphs: CSW approach - KCBS - CHSH Bell scenario - Limitations: I₃₃₂₂ A. Cabello, S. Severini, A. Winter, arXiv:1010.2163