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Scenarios with operational equivalences

Example: two projective measurements.

(1) {My,M,, M3} associated to

outcomes {vi, va, v3}.
v
va) V1 (2) {Ns, My, ﬂs}/associated to
outcomes {v3, v4, vs }.

Vs Z?:l Mi=1= Z?:ez ;.

Born's rule:  p(vs) = tr {M3p} =p(vz) Vp



Scenarios with operational equivalences

X
@ Set of measurements
@ Set of outcomes
@ Operational equivalences — identify outcomes of
different measurements: same probability
a

Hypergraph: 'q V2

@ Vertices — events — measurement outcome

@ Hyperedges — complete measurements — set of va > < o)vi

outcomes



Probabilistic models

Probabilistic model — outcome statistics respecting operational equivalences
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State-independent contextuality

Nine measurements of four possible outcomes each.

C(H) =0 while Q(H) # 0
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The non-orthogonality graph

“Two events are orthogonal if there exists a hyperedge that contains them
both”

H(V,E) — NO(H)

Example:

Contextuality scenario: H Non-orthogonality graph: NO(H)




NO graph and probabilistic models

peC(H) iff a* (NO(H),p)=1



NO graph and probabilistic models

peC(H) iff o (NO(H),p)=1

Quantum models cannot be characterised by the properties of (NO(H), p)

Example: 3 H, H', p st

- p€ Q(H)
- pe Q(H)\ QH)
- NO(H) = NO(H')



Bell scenarios
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Bell scenario —

events-based hypergraph?
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Bell scenarios

Bell scenario —

events-based hypergraph?

Alice
(00]00 01]00)(00]01 01]01)
) (<) (<) (<)
0]0 1]0
@ o> 1000 11j00||10]01 11j01
L9 o J| o o j
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10[10 11]10[|10[11 11|11
(4] o (<) o
HA (. AN J
p: (00j00) — 1, (10/01) -1, (00J10) —1,
pa(0]00) =1, pa(0[01) = 0.

This choice of hypegraph admits signalling models

(00[11) — 1

Bob



Bell scenarios

Correlated measurements

@ temporal order of the parties. e.g. A— B
@ a choice of measurement for the first party, e.g. x.
@ a function y = f(a) for the second party, that determines its

measurement input as a function of the previous party’'s outcome.
Example:
(A= B, x=0,y=a)

Correlated measurement with outcomes {(00/00), (01]00), (10|01), (11]01)}.



Bell scenarios

Events-based hypergraph: Bp m,q4
@ Vertices: events

@ Egdes: correlated measurements
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Bell scenarios

Events-based hypergraph: Bp m,q4
@ Vertices: events

@ Egdes: correlated measurements

o g(Bn,m,d) = NS(”, m, d)
@ C(Bnmad)=C(n,m,d)

o Q(Bn,m,d) = Q(n7 m, d) — nab\xy - na\x I_Ib\y with [I_Ia|x 3 I-|b|y] =0

@ B, m,qd may be computed via the “Foulis-Randall” product of the local
hypergraphs.
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C € M measurement context



Relation to Compatible-observables scenarios

Scenario : (X, 0, M)

@ X: observables
@ O: outcomes

@ M: measurement cover — sets of compatible measurements
C € M measurement context

KCBS:

X={A :1<i<5}
0={-1,1}

M = {{A1, Ao}, {A2, As}, {As, As}, {As, As}, {As, Aut)



Relation to Compatible-observables scenarios

(X,0,M) — H[X]

@ Vertices:

@ Hyperedges:
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Relation to Compatible-observables scenarios

@ Vertices: (s5,C): CeM,s€ O

KCBS:  (ajaiy1|Ai Ait1)

@ Hyperedges:  Measurement protocols

- Choose and measure an observable (A).

- Depending on the outcome,

choose a compatible observable (A’).

- Measure (A'), ...

KCBS:

f(1)

AL 1} = {Aco1, Ak}
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Probability table:

‘ Ai1Br AyB1 AiBy AB»
00 1 0 1 0
10 0 1 0 1
01 0 0 0 0
11 0 0 0 0

+
Possibility table:

‘ Ai1Br AyB1 Ai1B, AB»
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Contextuality bundles

Tool to demonstrate the obstruction to a NCHV model

Probability table:

‘ AiBi AxB1 Ai1By Ay B>

00 1 0 1 0 1
10 0 1 0 1
01 0 0 0 0
11 0 0 0 0
0
J
Possibility table:
A2 Bl
| AABL ABi AIB, A B et ot

00 1 0 1 0 PR &
10 0 1 0 1 B, A1
01 0 0 0 0
11 0 0 0 0

- Local section: assignment of ‘possible’ values for a given context.
- Global section: collection of ‘compatible’ local sections



Contextuality bundles

PR-box
Probability table:
‘ A1B1 AB1 AiB AB
T T T
01 3 3 3 0
10 0 0 0 p
or| o 0 0 3
1 1 1
11 5 5 5 0
J
Possibility table:
| AiBi  A2B1 AiIBy A B
00 1 1 1 0
10 0 0 0 1
01 0 0 0 1
11 1 1 1 0




Contextuality bundles

PR-box
Probability table:
| ABL ABL AiB, AB .
1 T I
0 | 3 2 2 0
10 0 0 0 :
01 0 0 0 3
1 1 1
i 2 2 p 0 0
1
Possibility table:
Az By
| AiBL ABi ABy A B B Kad
00 1 1 1 0 AN &
10 0 0 0 1 B, Ar
01 0 0 0 1
11 1 1 1 0

No local section can be extended to a global one

— Strong Contextuality



Contextuality bundles

A quantum example

1
Possibility table:
0
‘ AiBr AxBr Ai1By Ay B>
00 1 0 0 1
10 1 1 1 1
01 1 1 1 1
11 1 1 1 0 Ay B
- Cad
7’ 7’
F----- <



Contextuality bundles

A quantum example

1
Possibility table:
0
| AABi A2B1 AiB AB
00 1 0 0 1
10 1 1 1 1
01 1 1 1 1
11 1 1 1
0 A2 Bl
- Ead
7’ 7’
F----- <&
Bz Al

Some local sections cannot be extended to a global one

— Logical Contextuality



Summary of today

@ Scenarios from operational equivalences
- Define sets of probabilistic models

- Graph theoretical advantages

- Bell scenarios

- Compatible-observables scenarios (S. Abramsky and A. Brandenburger,
New J. Phys. 13(11), 113036 (2011).)

A. Acin, T. Fritz, A. Leverrier, A.B. Sainz, Comm. Math. Phys. 334(2),
533-628 (2015).

@ Contextuality bundles

S. Abramsky, R. Soares Barbosa, K. Kishida, R. Lal and S. Mansfield,
24th EACSL, CSL 2015, pages 211-228, 2015.



Closing remarks

@ Kochen-Specker contextuality, with focus on graph theory
@ Hidden variable models, and quantum violations

@ Contextuality scenarios: ‘observables with compatibility relations’, or
‘events with operational equivalences’.

@ Types of probabilistic models — graph theory
CSW: contextuality

ALFS: set membership

@ Bell scenarios as contextuality ones
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Comments on dilation

“Dilation”, a.k.a. “The Church of the larger Hilbert space”:

Let p(a|x) be a probabilistic model in a contextuality scenario. Let us assume
that we have a realisation of it in terms of POVMs (i.e. generalised
measurements); that is, a Hilbert space 7, positive semidefinite matrices M,
s.t. >, M, = 13 and a quantum state p, s.t. p(a|x) = tr {Ma|x p}.

A dilation of this model is a realisation of the correlations in terms of projective
measurements, i.e. a Hilbert space H’ (possibly of larger dimension than #),
projectors I, s.t. > M, x = 13 and a quantum state P, s.t.

p(alx) = tr {Ma. p'}.

Colloquially, the POVM operators M,, are dilated into projection operators
Ma)x-

When can we find a dilation of a POVM model?

The mathematical counterpart of this question was addressed by Naimark and
Stinespring in the context of C*-algebras. See e.g.,

M. A. Naimark. On a representation of additive operator valued set functions
(Russian). Doklady Acad. Nauk SSSR, 41(5):373375, 1943

Vern Paulsen. Completely Bounded Maps and Operator Algebras. Cambridge,
University Press, 2003



Comments on Dilation

Contextuality scenarios:

It is not always possible to dilate a POVM realisation of a probabilistic
model, such that the dilated projectors satisfy the same compatibility
relations as the original POVM elements.

C. Heunen, T. Fritz and M. L. Reyes, Phys. Rev. A 89, 032121 (2014).

Bell scenarios:

Any POVM realisation of Bell correlations has an equivalent realisation in
terms or projective measurements.

Double Stinespring theorem: T. Fritz, Rev. Math. Phys. 24(5), 1250012
(2012). (uses C*-algebraic formulation of quantum theory)

V. Paulsen, Lecture notes on “Entanglement and Non-Locality” (Sec. 9),
available at http://www.math.uwaterloo.ca/~vpaulsen/
(does not use C*-algebras)



