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Dr. Ĺıdia del Rio

Dr. Christopher Portmann
Prof. Renato Renner

A thesis submitted for the degree of
MSc. Physics

September 2017

Quantum Information Theory Group
Institute for Theoretical Physics

ETH Zürich
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Abstract1

Two projects were completed as part of this Masters thesis:

1. Composable security in relativistic quantum cryptography : The research carried out as part of
the thesis on this topic lead to the original research paper [1]. An abstract of this is provided
in the preface of this report and will not be discussed further in this report. We refer the
reader to the original paper for further information in this regard.

2. Causality in quantum theory and beyond : This will be the topic of this thesis. It consists of
a review of quantum causality followed by a detailed analysis of and discussion about two
mathematical frameworks for studying quantum causality. Below, we give an abstract of
what one will encounter in this report.

In the light of Bell’s theorem [2] and its experimental, loophole-free tests [3–5], it has become ap-
parent that the classical understanding of causality [6,7] does not provide satisfactory explanations
of quantum experiments involving entangled systems [8]. This implies that the notions of cause in
quantum and more general theories are fundamentally different from the classical case.

There are several frameworks for studying quantum causality and they can be grouped under
two broad categories. One approach is to generalise existing classical causal models to quan-
tum ones [9–13]. Another approach is to start by defining general frameworks for causal struc-
tures [14–18], and then narrowing down to identify properties of quantum causal structures. For
example, traditionally, one assumes a fixed background space-time structure while describing phys-
ical phenomena but recent approaches to modelling causal structures [14–17] within more general
frameworks have shown that one can study cause-effect relations even without referring to an un-
derlying space-time structure. This allows one to consider causal structures that are themselves
subject to fundamental quantum principles such as superposition and uncertainty and are not
compatible with a definite causal order. Some indefinite causal structures of this kind may be seen
to arise in situations where quantum mechanics and general relativity are jointly applied [19] and
a deeper understanding of these may be crucial for a theory of quantum gravity.

In this thesis, we will focus mainly on two frameworks within the second approach: the causal
box [18] and the process matrix frameworks [16]. While the process matrix framework models
“superpositions of causal orders” in the absence of a global order such as a fixed background space-
time, the causal boxes framework assumes a fixed global order. The quantum switch [20] which has
been physically implemented [21,22] is often claimed to be superposition of causal orders but can
be represented as a causal box [18] and is hence compatible with a fixed background space-time.
This raises the question of whether these are really “superpositions of causal orders” of space-time
events or merely “superpositions of the temporal orders” of operations. By analysing the quantum
switch in the two frameworks, we argue that the quantum switch as currently implemented does
not constitute a superposition of causal orders but rather a (controlled) superposition of temporal
orders of fixed operations. To this effect, we provide the mathematical mapping from the causal box
representation to the process matrix representation of the quantum switch and discuss the physical
differences between them. This also gives interesting insights into the current implementation of
the quantum switch and it’s gravitational version [19] which is a proposed thought experiment
with no known physical implementations. We then compare the two frameworks more generally
and conclude with some interesting open questions in this direction.

1In this version of the thesis, an incorrect conclusion made in one of the discussions of the original version has
been corrected and some typos and grammatical errors fixed. The main scientific content and most of the remaining
writing is identical to the original version submitted in September 2017. More concretely, the main changes have
been made in Section 4.1.4 where it was earlier mentioned that the causal box and process matrix representations
are mathematically equivalent up to vacuum states but this was not the correct conclusion of our mathematical
derivation and has now been corrected and this discussion partially rewritten.



Preface

Here we provide an abstract of the first part of this masters thesis as it appears on the paper titled
Composable security in relativistic quantum cryptography [1]. We refer the reader to the original
paper for further information in this regard.

Relativistic protocols have been proposed to overcome some impossibility results in classical and
quantum cryptography. In such a setting, one takes the location of honest players into account,
and uses the fact that information cannot travel faster than the speed of light to limit the abilities
of dishonest agents. For example, various relativistic bit commitment protocols have been proposed.
Although it has been shown that bit commitment is sufficient to construct oblivious transfer and
thus multiparty computation, composing specific relativistic protocols in this way is known to be
insecure. A composable framework is required to perform such a modular security analysis of con-
struction schemes, but no known frameworks can handle models of computation in Minkowski space.
By instantiating the systems model from the Abstract Cryptography framework with causal boxes,
we obtain such a composable framework, in which messages are assigned a location in Minkowski
space (or superpositions thereof). This allows us to analyse relativistic protocols, and derive novel
possibility and impossibility results. We show that (1) fair and unbiased coin flipping can be con-
structed from a simple resource called channel with delay; (2) biased coin flipping, bit commitment
and channel with delay through any classical, quantum or post-quantum relativistic protocols are all
impossible without further setup assumptions; (3) it is impossible to securely increase the delay of a
channel, given several short-delay channels as ingredients. Results (1) and (3) imply in particular
the non-composability of existing relativistic bit commitment and coin flipping protocols.

Please note that most of the original research carried out as part of this thesis are presented in
the paper [1]. This report only covers the part of the thesis that is not presented in the paper. It
consists primarily of a review of two frameworks (the causal box [18] and process matrix [16] frame-
works) that can be used to study quantum causality, followed by a comparison of the two. The
frameworks are quite different in their structure and applications, and to the best of our knowledge,
such a systematic comparison of these two frameworks has not been carried out previously.
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Chapter 1

Introduction

1.1 Classical causality

Deducing cause-effect relationships between random variables based on their observed statistical
correlations has been crucial in diverse areas of science [6,7]; for example, in determining the effect
of a certain drug in curing a disease and analysing the financial risks in a new undertaking, among
others. Indeed it is common sense to expect that if physical variables are found to be statistically
correlated, then this ought to have a causal explanation. However, correlations are symmetric while
causal information is directional. To quote the example from [26]: ”the statistical statement the
number of cars is correlated with the amount of air pollution is different from the causal statement
cars cause air pollution. The statistical statement goes both ways: Knowing there are more cars,
one can infer that the air is more polluted and knowing the air is more polluted, one can infer that
there are more cars. The causal statement tells us more; namely, if we change the number of cars,
we can affect air pollution, but not vice versa: polluting the air by other means (say by building
factories) will not affect the number of cars. Causal information is different from correlations
because it tells us how the system changes under interventions.”

One often hears “correlation does not imply causation”. This is formalised by Reichenbach’s
principle [27] which states that if two variables are found to be correlated, then either one is a
cause of the other or there is a third variable that is a common cause of both. “If an improbable
coincidence has occurred, there must exist a common cause” he famously said. For example
(Figure 1.1), if I observe that I get tired every time I go for a long run, this can be explained by
the reasoning that the running causes me to expend energy which makes me tired i.e., running is a
direct cause of my getting tired. On the other hand, if I observe that I tend to catch a cold on the
days when the sales of room heaters peak, I would not conclude that rising room heater sales cause
me to catch a cold or that my catching a cold causes room heater sales to rise but that a third factor,
the cold weather is causing people to buy more room heaters and also causing me to fall sick. Here
the cold weather is a common cause for both and given that the weather is cold, the correlations
between my catching a cold and the room heater sales would disappear. If two correlated variables
are found to have a common cause, the correlation will disappear if probabilities are conditioned
to the common cause. In these simple examples, one was able to choose the most likely causal
explanation simply through common sensical arguments, in most cases the causal explanation for
the observed correlations is far from evident: if a researcher observes strong correlations between
smoking and having cancer, should she conclude that smoking causes cancer, having cancer causes
people to start smoking or that there exists a third, genetic factor which causes people to smoke
and also increases their risk of cancer [13]? She would definitely not go for the second choice if it
is found that getting cancer is often preceded (and not followed) by someone starting to smoke. In
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Figure 1.1: a) An example of a directed acyclic graph (DAG) representing a direct cause scenario.
b) An example of a DAG representing a common cause scenario.

this case, the additional information about the temporal order of the events is known, which allows
her to rule out one of the causal explanations because the effect cannot precede the cause. In the
third case however, given that this genetic factor is present is enough to conclude that the person
has a higher risk of cancer irrespective of whether or not he smokes and we can say that smoking
and having cancer are conditionally independent given the genetic factor and smoking has no direct
effect on cancer. Conditional independences provide new information about the statistical data
and one needs to update their knowledge in the light of this new information, this is usually done
through a process called Bayesian updating [6, 7]. The problem naturally gets more complex as
the number of variables grow but these examples highlight that a model for describing cause-effect
relations must take into account interventions as well as conditional dependences and a method
for updating ones knowledge based on these independences.

Interventions, conditional independences and Bayesian updating based on these independences
have been fairly well understood in the classical case and there are well established frameworks
for classical causal models that take all these aspects into account [6, 7]. For the purpose of
systematically deducing the causal relations between a set of variables from their observed statis-
tical correlations, mathematical models for causal discovery have been extensively studied and we
now have many causal discovery algorithms that serve the purpose (summaries in [6, 7] and the
references therein).

1.2 Quantum Causality: Implications of Bell’s theorem

Having invested a tremendous effort over the course of several years in understanding and building
solid frameworks for modelling classical causality, it is natural to ask whether the same methods
could be applied to deduce cause-effect relations between microscopic quantum systems. One
finds that existing classical causal discovery algorithms (i.e., algorithms for deducing cause-effect
relationships from statistical date) fail to satisfactorily explain quantum cause-effect relations [8].
This result is an unavoidable consequence of Bell’s theorem [2]. In a loophole-free Bell experiment
between Alice’s and Bob, a direct cause relation between Alice and Bob’s systems is ruled out
by the non-signalling conditions. Reichenbach’s principle [27] then implies that Alice’s and Bob’s
systems share a common cause which could be a hidden variable in the joint causal past of the
two systems. This means that the observed correlations between Alice’s and Bob’s systems must
disappear when conditioned on this hidden variable which is their common cause. But a loophole-
free Bell violation rules out exactly this: quantum correlations from entangled particles do not
disappear even when conditioned on such hidden variables. This implies that the notion of cause
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that governs microscopic systems is fundamentally different, which has fuelled much research in
quantum causal models [9–11] and quantum causal discovery [12,13].

The work by John-Mark Allen et al. [9] provides a description of quantum common causes based
on a quantum version of the Reichenbach principle that they generalise from a mathematical form
of the original principle. They then use this notion of quantum common causes to build a basic
quantum causal model that models interventions and conditional independences and provides a
method for Bayesian updating. While this model comes a long way in providing a quantum
definition of causation, many open questions still remain. For example, the work [9] provides an
unambiguous way of understanding conditional independences in simple scenarios such as that of
common cause, but a full understanding of quantum conditional independences in general scenarios
with more interacting systems is still lacking.

1.3 More general causal structures

Another approach to studying causality is to devise general frameworks for causal structures that
in particular include classical and quantum ones, and then try to narrow down the properties of
quantum causal structures. This is a top-down approach as compared to the bottom-up approach of
the previous section where one tries to build a quantum framework for modelling causal structures
predicted by quantum experiments. The top-down approaches are the focus of this report.

fTraditionally, the assumption of a fixed background causal structure is often made while de-
scribing physical phenomena. However, recent approaches to modelling causal structures [14–18]
within more general frameworks have shown that violations of special relativity such as closed-
timelike-curves (CTCs) do not arise even when such an assumption is dropped. More specifically,
it is possible to have causal structures that are themselves subject to fundamental quantum prin-
ciples such as superposition and uncertainty. This opens up the interesting theoretical possibility
of a large class of processes admitting no definite causal order, which are not in contradiction with
any known laws of physics. These include processes involving superpositions of definite causal
structures as well as more general processes which admit no causal explanation, not even as a
superposition of fixed causal orders [16,23,24].

Some examples of indefinite causal structures may be seen to arise in hypothetical situations
where quantum mechanics and general relativity are jointly applied. For example [19], if one
considers a massive object in superposition at different spatial locations, the gravitational field
produced by the object will also be in a superposition of different configurations (one corresponding
to each spatial location of the object) and so will the space-time geometry itself. In such a scenario,
the space-time metric does not have a definite value and it is not fixed in advance whether the
space-time interval between two space-time points is space-like or time-like. In fact, it is believed
that [15, 19] a complete theory of quantum gravity would have the indeterminism of quantum
theory and the dynamic causal structures of general relativity, and that a correct and complete
understanding of (space-)time and causality at the quantum level (which is currently lacking)
would be crucial for overcoming some of the major difficulties in formulating such a unified theory.

It is not known whether processes without a causal explanation occur in nature; however, an
example of a process that is claimed to implement a superposition of causal orders [22, 23] is the
quantum switch [20]. The quantum switch, as its name suggests, switches between the order of two
operations on a target system depending coherently on the value of a control system which is in a
quantum superposition. This was physically implemented in [21,22]. However, such processes still
admit a causal explanation [18,23], and it can be debated whether the quantum switch implements a
superposition of causal orders between two space-time events or merely a superposition of temporal
order of two quantum operations (Section 4.1.3). Irrespective of the answer to this debate which
would be of foundational importance, the quantum switch (discussed in Sections 1.4 and 4.1) is
shown to provide a computational advantage over fixed ordering of operations for tackling certain
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Figure 1.2: Linear optical implementation of the quantum switch (Figure 1 [29]): A
horizontally polarized photon is transmitted by the all the polarizing beam splitters (PBSs) and
takes the path where the unitary UA is applied first and then UB while a vertically polarized photon
is reflected by all PBSs and follows the path where UB is applied before UA. The unitaries UA
and UB act on internal degrees of freedom of a single photon other than its polarization state e.g.,
angular momentum modes. Thus the control and target states are encoded in different degrees of
freedom of the same photon. [29]

operational tasks [28, 29]. Many existing frameworks such as that of quantum combs [30] and
the quantum circuit model assume a fixed, pre-defined order of operations and do not capture
the actual implementation [21,22] of the quantum switch which involves a superposition of orders
of quantum operations. This creates a need for frameworks that can model dynamic ordering
of operations and superpositions thereof. Some examples of such frameworks are: the causaloid
framework [15], the multi-time states formalism [14,31,32], the process matrix framework [16] and
the causal box framework [18].

1.4 Superpositions of orders: the quantum switch

The quantum switch (QS) [20] is an example of a physically implementable [21, 22] process that
cannot be described using a fixed, pre-defined order of operations, but requires a dynamic, quantum
controlled ordering. The simplest quantum switch is a quantum process that coherently switches
between the order or two operations depending on the value of a quantum control bit.

More formally, consider two qubit Hilbert spaces HC and HT where the former denotes the
(pure) state space of the control qubit and the latter that of the target qubit. A quantum switch
takes as input the state (α ∣0⟩ + β ∣1⟩)C ⊗ ∣Ψ⟩T ∈ HC ⊗HT (with ∣α∣2 + ∣β∣2 = 1) and outputs the
state (α ∣0⟩C UBUA ∣Ψ⟩T + β ∣1⟩C UAUB ∣Ψ⟩T ) ∈ HC ⊗HT where ∣Ψ⟩ is an arbitrary qubit state in
HT and UA, UB are unitaries that act on the target qubit and represent the events A and B whose
orders are switched by QS.

(α ∣0⟩ + β ∣1⟩)C ⊗ ∣Ψ⟩T → α ∣0⟩C ⊗UBUA ∣Ψ⟩T + β ∣1⟩C ⊗UAUB ∣Ψ⟩T (1.1)

A schematic of the experimental setup used to realise this process is shown in Figure 1.2 which
is adapted from [29]. Note that each of the unitaries UA and UB (given as black boxes) is queried
only once. In fact this process cannot be represented as a regular quantum circuit if one requires
that the unitaries UA and UB are queried only once each. If at least one unitary could be queried
twice, then there is an almost trivial circuit representation as shown in Figure 1.3. In fact, the
quantum switch was shown to have a computational advantage over fixed ordering of operations
in solving certain computational tasks [28,29] as it reduces the query complexity.

The quantum switch as implemented in [21, 22] i.e., with one query to each black-box unitary
cannot be represented in the quantum circuit model, but there exist other, more general formalisms
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UB UA UB

X Xα ∣0⟩C + β ∣1⟩C

∣ψ⟩T

α ∣0⟩C UBUA ∣ψ⟩T
+β ∣1⟩C UAUB ∣ψ⟩T

Figure 1.3: Minimal circuit representation of the quantum switch: To represent the quan-
tum switch as a circuit, one needs to query at least one of the unitaries twice. Note that a controlled
unitary (given as a black box) such as UB in the figure can be implemented using controlled swaps
between the control qubit, the target and an ancilla system (of the same dimensions as the target).
In such a case, each of the unitaries UA and UB would be applied only once to the target but
at least one of them would have been queried twice, where the additional query comes from the
unitary acting on the ancilla system. However, the physical implementation of the quantum switch
achieves the task with not more than one query to each unitary [21, 22]. This can be modelled
using frameworks which do not assume a fixed ordering of operation, such as [14–16,18,32].

for modelling such processes with no definite causal order, such as the process matrix formalism [16]
and causal boxes [18] among others [15].

1.5 Structure of this thesis

In this work, we review the causal box [18] and process matrix [16] frameworks in detail in Chap-
ters 2 and 3 respectively. In Chapter 4 we compare the two frameworks. First, in Section 4.1, we
review the description of the quantum switch in both formalisms and describe the mathematical
map that maps the causal box representation to the process matrix representation of the quan-
tum switch. This helps us see the crucial differences between the two representations of the same
physical system/process that is the quantum switch1 and we discuss why it does not implement
a superposition of causal orders. Following this, in Section 4.2, we provide a detailed comparison
of the two frameworks from a general perspective. Finally, we conclude with a summary of open
questions in Section 4.3.

1In the causal box framework, the quantum switch is viewed as a system but in the process matrix, as a process.
But this distinction does not matter here.
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Chapter 2

The causal box framework [18]

The Causal Box [18] formalism models information-processing systems that are closed under com-
position. Similar formalisms have been previously developed but they are only suitable for mod-
elling systems where the order of messages is predefined. An example of such a framework is that
of quantum combs [30], similar formalisms were developed in [33, 34]). A quantum comb is an
information-processing system (Figure 2.1 [18]) where each tooth of the comb corresponds to an
input and output (possibly quantum) message and is associated with a node that represents an
operation on the input message. The teeth of the comb define a fixed order on the operations
and the quantum comb framework models these objects in a way that they can be described inde-
pendently of their internal state and also provides rules for composing different combs when the
order of messages is fixed. Thus the quantum combs framework cannot model situations where
the causal structure is not predefined, e.g., when it is determined by a coin toss or coherently by
the value of a quantum control bit. Indeed, consider a three-player protocol [18] where Alice and
Bob send a random message to Charlie at different times and Charlie outputs the first message
he receives and ignores the second. While the information processing tasks performed by Alice,
Bob and Charlie separately can be described by individual quantum combs, the composition of
the three systems is no longer a well-defined comb because it takes no input and produces one
undetermined output (either Alice’s or Bob’s message, but it is not known in advance which one
will be output by Charlie).

Figure 2.1: An example of a quantum comb (Figure 1 [18], 2017 IEEE): Each tooth of
the comb corresponds to an input and output (possibly quantum) message and is associated with
a node that represents an operation on the input message. The teeth of the comb define a fixed
order on the operations.

When information processing systems are modelled as causal boxes, arbitrary composition of
these systems is well defined even when the causal order is indefinite or dynamically determined
during the protocol’s runtime. Within the framework, a player can choose to send a message ∣Ψ⟩ to
another player or send nothing, which is denoted by the vacuum state ∣Ω⟩ or even a superposition
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Ψ̂ Φ̂

(v, t)

classical/quantum message space-time stamp

Λ̂

Ω̂

Figure 2.2: Causal boxes (Figure 5a [1]) are information processing systems that respect
causality and are closed under composition (serial, parallel or loops). Arbitrary composition of the
causal boxes Φ̂, Ψ̂ and Λ̂ is a causal box Ω̂. Every message is modelled as a pair, (v, t) where v
denotes the classical/quantum message and t provides ordering information and could be thought
of as the space-time location at which the message is sent or received.

of the two i.e., a state of the form α ∣Ψ⟩+β ∣Ω⟩. A message could also be in a superposition of being
sent to Alice and being sent to Bob i.e., in the state: α ∣Ψ⟩A ⊗ ∣Ω⟩B + β ∣Ω⟩A ⊗ ∣Ψ⟩B . Thus players
can exchange a superposition of different numbers of messages in a superposition of orders. Every
output of a causal box can only depend on inputs ordered before it and hence the superposition
of orders mentioned before corresponds to a superposition of causal structures, where each term
of the superposition corresponds to a definite causal structure.

Such superpositions involving the vacuum state ∣Ω⟩ have been shown to be necessary for the
physical realisation of information processing tasks such as controlling an unknown unitary [35].
The task involves applying an unknown unitary (given as a black box) on a target qubit only if
the control qubit is in the state ∣1⟩ and not applying any operation (i.e., performing an identity)
otherwise. Interestingly, this task was initially proven to be impossible in theory [36, 37], yet it
was realised experimentally [38]. The reason for this seemingly paradoxical situation is that the
theoretical proof did not take into account the existence of a quantum state, ∣Ω⟩ that is invariant
under the action of all unitaries i.e., U ∣Ω⟩ = ∣Ω⟩ ,∀U while this is experimentally possible by sending
“nothing” through a wire1 as well as superpositions of sending “nothing” and “something”. The
impossibility proof does not go through in this case since one of the eigenvalues of the unknown
unitary U is known (its action on ∣Ω⟩ is known).

2.1 Message space and wires

We now review the formal definitions of the objects of the causal box framework [18]. The main
ingredients of the framework are the space of ordered quantum messages, input and output wires
that can carry different numbers of such messages and a set of maps (which together describe a
causal box ) that obey causality and describe how the contents of the input wires transform into
those at the outputs at different “times”. The formalism then provides a method for combining or
“composing” these maps in different ways to create a new set of maps (Figure 2.2).

1. Space of ordered messages: Every message is modelled as a pair, (v, t) where v ∈ V
1A unitary acting on no input (i.e., the vacuum state ∣Ω⟩) produces no output and hence leaves the state invariant.
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denotes the message and t ∈ T provides ordering information and could be thought of as the
space-time location at which the message is sent or received where T is a countable, partially
ordered set. The space of a single message is thus a Hilbert space with the orthonormal basis
{∣v, t⟩}v∈V,t∈T . For a finite V and infinite T , this Hilbert space corresponds to C∣V ∣ ⊗ l2(T )
where l2(T ) is the sequence space with a bounded 2-norm. For ∣V ∣ = d > 2 ∈ N, this Hilbert
space represents the state-space of a qudit with position2 information. For example. the
state ∣ψ⟩ = 1√

2
(∣0, t⟩+ ∣1, t⟩) = 1√

2
(∣0⟩+ ∣1⟩)⊗ ∣t⟩ belongs to the space corresponding to a qubit

with time information and corresponds to the qubit state 1√
2
(∣0⟩ + ∣1⟩) being sent/received

at time t ∈ T .

2. Wires: The inputs and outputs to a causal box are sent/received through wires which can
carry any number (or a superposition of different numbers) of messages of a fixed dimension,
which defines the dimension of the wire. For example a 2 dimensional wire can carry any
number of qubits, or can be in a superposition of carrying 2 and 3 qubits but cannot carry
qutrits. Thus the state space of a wire is defined to be a symmetric Fock space. It is
modelled as a Fock space to allow for superpositions of different numbers of messages and it
is a symmetric Fock space since all ordering information associated with the arriving qudits
is already contained in the label t ∈ T and given this label, there is no other ordering on the
qudits. For the Hilbert space, H = Cd⊗ l2(T ), the corresponding bosonic Fock space is given
as

F(Cd ⊗ l2(T )) ∶=
∞
⊕
n=0

∨n(Cd ⊗ l2(T )), (2.1)

where ∨nH denotes the symmetric subspace of H⊗n and H⊗0 is the one-dimensional space
containing the vacuum state ∣Ω⟩.

For example, the state space corresponding to a wire A carrying dA dimensional messages is
denoted by FTA = F(CdA ⊗ l2(T )). The joint space of two wires can be written as FTA ⊗FTB = FTAB
and it can be shown [18] that for any two Hilbert spaces HA = CdA ⊗ l2(T ) and HB = CdB ⊗ l2(T ),

F(HA)⊗F(HB) ≅ F(HA ⊕HB), (2.2)

(CdA ⊗ l2(T ))⊕ (CdB ⊗ l2(T )) ≅ (CdA ⊕CdB)⊗ l2(T ). (2.3)

Hence FTAB can be interpreted as the state space of a wire carrying (dA+dB) dimensional messages.
Conversely, any wire A of messages of dimension dA can be split in two sub-wires A1 and A2 of
messages of dimensions dA1 + dA2 = dA:

FTA ≅ FTA1
⊗FTA2

. (2.4)

Further, for any subset P ⊆ T ,

FTA ≅ FPA ⊗F P̃A , (2.5)

where P̃ = T /P and FPA = CdA ⊗ l2(P).
An example at this point would be illustrative. An orthonormal basis for the Hilbert space

of a single message encoded in a qubit is given by Hqb = {∣(i, t)⟩i∈{0,1},t∈T }. The basis for H⊗2
qb is

then given by {∣(i1, t1), (i2, t2)⟩}i1,i2∈{0,1},t1,t2∈T and H∨2

qb which is the symmetric subspace of H⊗2
qb

is denoted by
∨ span({∣(i1, t1), (i2, t2)⟩i1,i2∈{0,1},t1,t2∈T }).

2
T is modelled as a partially ordered set in the framework, this could physically correspond to space-time or

simply time information depending on the situation. We will often refer to this as “position” information.
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Now a state in H∨2

qb corresponding to the message 0 being sent at time t1 and the message 1 being
sent at time t2 which we can denote in short-hand by ∣“(0, t1), (1, t2)”⟩ ∶= ∣“01”⟩, represents the
symmetric state given in Equation (2.6a). Similarly the state corresponding to 1 being sent at
t1 and 0 at t2 can be denoted as ∣“(1, t1), (0, t2)”⟩ ∶= ∣“10”⟩ and represents the symmetric state
given in Equation (2.6b). The reason for the symmetrisation is now more apparent: there is no
physical different between the states ∣“(0, t1), (1, t2)”⟩ and ∣“(1, t2), (0, t1)”⟩ since all the ordering
information corresponding to the messages is already contained in their respective position labels
t1 and t2.

∣“01”⟩ = 1√
2
(∣0, t1⟩⊗ ∣1, t2⟩ + ∣1, t2⟩⊗ ∣0, t1⟩), (2.6a)

∣“10”⟩ = 1√
2
(∣1, t1⟩⊗ ∣0, t2⟩ + ∣0, t2⟩⊗ ∣1, t1⟩) (2.6b)

An analogue of the maximally entangled, singlet state in this space can be written as follows. Note

that this is still a symmetric state belonging to H∨2

qb .

1√
2
(∣“01”⟩ − ∣“10”⟩) = 1√

2
(∣0, t1⟩⊗ ∣1, t2⟩ + ∣1, t2⟩⊗ ∣0, t1⟩ − ∣1, t1⟩⊗ ∣0, t2⟩ − ∣0, t2⟩⊗ ∣1, t1⟩) (2.7)

Now we can see how Equation (2.2) comes about. Consider two wires A and B. The state spaces
of these wires are denoted as F(HA) ∶= FA and F(HB) ∶= FB respectively. Let {∣(u, t)⟩}u∈U,t∈T
and {∣(v, t)⟩}v∈V,t∈T be a orthonormal bases of HA and HB . The orthonormal basis of H⊗2

A is then
denoted by {∣(u1, t1), (u2, t2)⟩}u1,u2∈U,t1,t2∈T and similarly for higher order tensor products of HA
and HB . The corresponding Fock spaces can then be written as follows:

F(HA) = ∨ span{
no messages

ª
{} ,

1 message
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{∣(u, t)⟩}u∈U,t∈T ,

2 messages
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{∣(u1, t1), (u2, t2)⟩}u1,u2∈U,t1,t2∈T , ......}, (2.8a)

F(HB) = ∨ span{
no messages

ª
{} ,

1 message
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{∣(v, t)⟩}v∈V,t∈T ,

2 messages
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{∣(v1, t1), (v2, t2)⟩}v1,v2∈V,t1,t2∈T , ......}, (2.8b)

where ∨span{∣i⟩}i∈I is the symmetric subspace of the span of the orthonormal basis {∣i⟩}i∈I
and the set {} denotes the “no message”, i.e., the vacuum state, which being the only state in
H⊗0 is also the orthonormal basis for this Hilbert space. From the above equations, we can write
a similar equation for the tensor product of the two Fock spaces3.

F(HA)⊗F(HB) = ∨span{
0 messages
³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
{{},{}} ,

1 message
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{{∣(u, t)⟩},{∣(v, t)⟩}},
2 messages

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{{∣(u1, t1), (u2, t2)⟩}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2 in A, 0 in B

,{∣(v1, t1), (v2, t2)⟩}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0 in A, 2 in B

,{∣(u1, t1), (v2, t2)⟩},{∣(v1, t1), (u2, t2)⟩}}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1 in A, 1 in B

, ......}
(2.9)

Relabelling the terms in the following manner then gives the desired isomorphism: Equa-
tion (2.2).

0 messages
³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
{{},{}} Ð→

0 messages
ª
{}

3We drop the subscripts in the basis sets for convenience, but it must be understood that u,u1, u2 ∈ U , v, v1, v2 ∈
V, t, t1, t2 ∈ T .
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1 message
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{{∣(u, t)⟩},{∣(v, t)⟩}}Ð→

1 message
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{∣(w, t)⟩}w∈U∪V,t∈T

2 messages
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{{∣(u1, t1), (u2, t2)⟩}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2 in A, 0 in B

, ...®
0 in A, 2 in B

, ...®
1 in A, 1 on B

}Ð→
2 messages

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{∣(w1, t1), (w2, t2)⟩}w1,w2∈U∪V,t1,t2∈T

F(HA)⊗F(HB) ≅ {
0 messages

ª
{} ,

1 message
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{∣(w, t)⟩}w∈U∪V,t∈T }, (2.10)

2 messages
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{∣(w1, t1), (w2, t2)⟩}w1,w2∈U∪V,t1,t2∈T }, ......} = F(HA ⊕HB) (2.11)

The isomorphism tells us that each valid state in the combined state space of two wires, one
carrying dA dimensional messages and the other carrying dB dimensional messages, can be mapped
to a valid state in the state space of a single wire carrying dA+dB dimensional messages. Although
the isomorphism follows from a trivial mathematical relabelling as shown above, the states related
by the isomorphism would physically correspond to different preparation procedures. Again, an
example would be illustrative.

We noted in the previous example that the “singlet” state in Equation (2.7) is still a symmetric

state belonging to H∨2

qb . More generally, this could be thought of as a state in F(Hqb) i.e., the state
space of a wire carrying 2 dimensional messages (encoded in qubits). Note that setting t1 = t2 = t
in Equation (2.7) reduces the state to 0. This is because for t1 = t2 = t, the two terms appearing
in the superposition are physically the same (there is no ordering information coming from the
position label) and they cancel out: both terms correspond to sending the messages 0 and 1 at
time t. This is natural since the singlet state of two qubits is an anti-symmetric state in the
2-qubit state space and the symmetric subspace of 2-qubits is the 3 dimensional subspace spanned
by the vectors {∣00⟩ , ∣11⟩ , 1√

2
(∣01⟩ + ∣10⟩)}. Thus a 2 dimensional wire with state space F(Hqb)

can only carry messages u ∈ U = span({∣00⟩ , ∣11⟩ , 1√
2
(∣01⟩+ ∣10⟩)}). If we want to send the message

1√
2
(∣01⟩− ∣10⟩)} i.e., the singlet state at time t, we could either send it as a single message through

a wire that can carry 4 dimensional messages or by virtue of the isomorphism of Equation (2.2),
we could encode it into two 2 dimensional wires. In particular, we can have the following scenarios:

1. Consider a single message v = 1√
2
(∣01⟩−∣10⟩) sent through a 4 dimensional wire at time t (with

basis {∣(v, t)⟩}v∈V,t∈T , V = {00,01,10,11}). Using the isomorphism, this could be encoded in
two wires such that the first bit of a label 01 denotes the wire and the second bit denotes the
value. Hence 1√

2
(∣(01, t)⟩ − ∣(10, t)⟩) would be an equal superposition of sending the qubit

state ∣1⟩ on wire 0 and the state ∣0⟩ on wire 1, both at time t. Note that for the single 4
dimensional wire, the state is not entangled in this case since the basis labels {00,01,10,11}
could simply be relabelled as {0,1,2,3} and the message simply becomes v = 1√

2
(∣1⟩ − ∣2⟩)

sent at time t.

2. An entangled state for the 4 dimensional wire would require at least two (4D) messages, for ex-
ample one can consider the state 1√

2
(∣“(0, t), (3, t)”⟩−∣“(1, t), (2, t)”⟩) = 1√

2
(∣“(00, t), (11, t)”⟩−

∣“(01, t), (10, t)”⟩) where ∣“(x), (y)”⟩ = 1√
2
(∣(x), (y)⟩+ ∣(y), (x)⟩). By the same isomorphism,

this can be encoded into two 2 dimensional wires (labelled by 0 and 1) as a superposition of
“send ∣0⟩ through wire 0 and ∣1⟩ through wire 1 at time t” and “send ∣1⟩ through wire 0 and
∣0⟩ through wire 1 at time t”.
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Having defined the input and output spaces of a causal box, a causal box can intuitively be
thought of as a set of mutually consistent maps from inputs received at a certain set of positions
to outputs produced at strictly later positions. In general, it is modelled as a set of maps and not
a single map because this allows systems to be included which produce an unbounded number of
messages and are thus not well-defined as a single map on the entire set T , but only on subsets of
T that are upper bounded by a set of unordered points. For example [18], a system that outputs
a state ∣0⟩ at every point t ∈ N is well-defined on every subset {1, ..., t}, but the limit behavior is
not, as it would correspond to a box that outputs an infinite tensor product of ∣0⟩.

Each map from the set characterising a causal box could be thought of as the map implemented
when the causal box is allowed to produce outputs until positions that are no later than a set of
unordered points. Naturally is is expected that the different maps characterising the same causal
box are mutually consistent i.e., any two maps would give the same description of the causal box
when restricted to the same set of positions. For a causal box where the set T = {1,2,3, ...}
represents a time parameter, the set of maps would describe how the causal box would act on
inputs if it is allowed to produce outputs until time t = 1, t = 2 and so on. Mutual consistency of
maps would require that if one is asked to describe how the box behaves if it can produce outputs
until t = 5, all the maps terminating at t = 5 or later should give the same answer i.e., tracing out
outputs produced at position t = 6 to t = N from a map from the set that produces outputs until
t = N should yield the map that stops producing outputs at t = 5.This will become clearer once we
formally define a causal box in the following sections. But before we do so, we must first define
cuts of a partially ordered set to formalise the meaning of upper-bounding by a set of points and
make precise the notion of causality that would be invoked in the definition of a causal box.

2.2 Cuts and causality

Definition 2.2.1 (Cuts [18]). A cut of a partially ordered set T is any subset C ⊆ T such that

C = ⋃
t∈C
T ≤t,

where T ≤ t = {p ∈ T ∶ p ≤ t}. A cut C is bounded if there exists a point t ∈ T such that C ⊆ T ≤t.
The set of all cuts of T is denoted as C(T ) and the set of all bounded cuts as C(T ).

The definition is illustrated in Figures 2.3 and 2.4. If there is an arrow from a point t ∈ T to
a point t′ ∈ T , then we can write t ≺ t′ i.e., t′ is in the “future” of t. The restriction to bounded
cuts is justified if one is only interested in points along single “branches” (sets of points that have
at least one point in their common future) i.e., one only cares about points that share a common
“future” (Figure 2.3). Minkowski space-time is a particular candidate for the partially ordered set
T , where all possible cuts are necessarily bounded since any two space-time points (even those
that are unordered i.e., space-like separated) necessarily share a common causal future. This
need not be the case for a general partially ordered set T , as seen in Figure 2.3. The different
branches in such sets that share no common “future” are like different non-interacting universes
and quantum mechanics on such spaces would in principle allow for quantum states to be copied
into different branches without violating the no-cloning principle, since both copies can never be
compared/accessed at the same position. However, it is enough to consider bounded cuts as they
capture all known physical situations.

The causality criterion that “an output can only depend on past inputs” is formalised by requir-
ing that for every causal box there exist a monotone function on the set of all cuts, χ ∶ C(T )→ C(T )
such that an output on C ∈ C(T ) can be computed from the input on χ(C) ⊂ C. The causality
function is defined on cuts since in general, inputs generated at a set of unordered positions {t}t∈T
may be required to compute an output in their joint “future” p ≻ {t}t∈T .
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Figure 2.3: Bounded and unbounded cuts on a partially ordered set: In this example, the
partially ordered set T contains 9 points. The cut C ∈ C(T ) is a bounded cut as all the points
included in this cut, 1,2,1′,2′ are all upper bounded by the single point 3 and their joint future is
described by the set of points {3,4,5,4′,5′} which is non-empty. The cut D ∈ C(T ) on the other
hand is unbounded since the points 4 and 4′ have no point in their joint future, they belong to
different “branches” (sets of points that have at least one point in their common future). For
example, 4 belongs to the branch given by the set of points 1,2,3,4,5 while 4′ belongs to the
different branch given by the set 1,2,3,4′,5′ which does not include 4. The cuts are such that
C ⊂ D and include 4 and 7 points respectively.

Since the output on C∪D can be computed from χ(C)∪χ(D) if the output on C can be computed
from χ(C) and the output on D computed from χ(D), it is required that χ(C ∪D) = χ(C)∪χ(D).
In addition, if C ⊆ D, then χ(C) ⊆ χ(D), because if χ(C) is needed to compute the output on C,
then certainly it is needed to compute the output on D ⊇ C.

Further, an additional condition is required to ensure that a causal box does not produce an
infinite number of messages in a finite interval of time, for such an operation would be ill-defined.
This could happen for example if the time gap between subsequent outputs of a system get smaller
and smaller and the sequence of the gaps converges to zero. To quote a more concrete example
from [18]: A system with T = Q+, that for every input received in position 1− t, for 0 < t ≤ 1, t ∈ T ,
produces an output in position 1 − t/2 will have the causality function χ([0,1 − t/2]) = [0,1 − t].
If this system initially outputs a message in position 0 and the messages output are looped back
to the input, this system should produce messages at points {0,1/2,3/4,7/8,15/16, ...} and thus
the system produces an infinite number of messages before t = 1. Such situations are avoided by
requiring that the causality function satisfies: ∀C ∈ C(T ),∀t ∈ C,∃n ∈ NN, t ∉ χn(C). This can be
easily seen by considering a cut C that includes the point t = 1. Any such cut would also include
all points t < 1. Now all the points t ∈ {0,1/2,3/4,7/8,15/16, ...} are “infinite” steps away from the
point t = 1 since by construction the sequence converges to 1 and the causality function applied to
t = 1 remains stuck at the same value which implies that these points will lie within the cut χn(C)
for all n ∈ N which violates the new requirement. This condition is further explained in Figure 2.4.
Putting these conditions together, the causality function is formally defined as follows:

Definition 2.2.2 (Causality function [18]). A function χ ∶ C(T ) → C(T ) is a causality function
if it satisfies the following conditions:

∀C,D ∈ C(T ), χ(C ∪D) = χ(C) ∪ χ(D), (2.12a)

∀C,D ∈ C(T ), C ⊆ D⇒ χ(C) ⊆ χ(D), (2.12b)
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Figure 2.4: Causality function: Consider the totally ordered, 1 dimensional set T = R+ as
shown. The cut upper bounded by the point t1 is now the set T ≤t1 = {p ∈ T ∶ p ≤ t1 ∈ T }. The last
condition [18] in Definition 2.2.2 ensures that any point t0 ≺ t1 can be crossed from t1 in a finite
number of steps, where each “step” denotes one use of the causality function. In the above figure,
t0 is crossed in 4 steps and the cuts (in this case linear sets) χn(t) with n ≥ 4 will not include
the point t0. The condition ensures that the causality function does not get “stuck” around any
position as was the case with the example function χ([0,1 − t/2]) = [0,1 − t] seen in this section.

∀C ∈ C(T )/{∅}, χ(C) ⊂ C, (2.12c)

∀C ∈ C(T ),∀t ∈ C,∃n ∈ N, t ∉ χn(C), (2.12d)

where χn denotes n compositions of χ with itself, χn = χ ○ ⋅ ⋅ ⋅ ○ χ.

Definition 2.2.2 is the general definition of the causality function and it simplifies for special
choices of the set T , as will be seen in Section 2.6. We are now in a position to review the formal
definition of a causal box.

2.3 General definition of a causal box

Definition 2.3.1 (Causal box [18]). A (dX , dY )-causal box Φ is a system with input wire X and
output wire Y of dimension dX and dY

4, defined by a set of mutually consistent (Equation (2.14)),
completely positive, trace-preserving (CPTP) maps (Equation (2.13))

Φ = {ΦC ∶ T(Fχ(C)X )→ T(FCY )}C∈C(T ). (2.13)

These maps much be such that for all C,D ∈ C(T ) with C ⊆ D,

trD/C ○ΦD = ΦC ○ trT /χ(C), (2.14)

where T(F) denotes the set of all trace class operators on the space F and the causality function
χ(.) satisfies all the conditions of Definition 2.2.2. FC is the subspace of FT that contains only
messages in positions t ∈ C ⊆ T and trD/C traces out the messages occurring at positions in D/C.

Equation (2.14) can be seen as the combination of the two requirements ΦC = trD/C ○ΦD and

ΦC = ΦC ○ trT /χ(C). The first one embodies the mutual consistency requirement while the second,

that of causality. ΦC = trD/C ○ ΦD says that a system producing outputs only at positions in C
is obtained from a system producing outputs only at positions in D ⊇ C by tracing out messages
produced at positions in D that are not in C. This ensures that two maps belonging to a set
describing the same causal box are same when they are restricted to producing outputs within the
same cut and hence describe the causal box consistently. ΦC = ΦC ○ trT /χ(C) says that only the
inputs on positions χ(C) ⊂ C are relevant for computing the outputs on positions in C, i.e., the
output on C can only depend on inputs that are before, namely χ(C).

4It is enough to define a causal box as a map from one input wire to one output wire since a single wire of
dimension d can always be decomposed into n wires of dimensions d1, ..., dn with d = d1 + d2 + ... + dn using the
isomorphism of Equation( 2.2)
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Note that Definition 2.3.1 only considers trace-preserving causal boxes. The definition can be
easily generalised to non-trace preserving causal boxes or sub-normalised causal boxes to account
for post-selection. This is done in [18] by defining a suitable projector on the space of normalised
causal boxes. We will not go into the details of this definition here.

2.4 Representations of causal boxes

2.4.1 Choi-Jamio lkowski (CJ) representation

CJ representation for infinite dimensional Hilbert spaces: For finite dimensional Hilbert
spaces HA and HB , a CPTP map Φ ∶ L(HA) → L(HB) between the set of linear operators on
the spaces has a Choi-Jamio lkowski (CJ) representation given by the positive, semi-definite Choi
operator RΦ ∈ L(HBA) defined as

RΦ =∑
i,j

Φ(∣i⟩ ⟨j∣)⊗ ∣i⟩ ⟨j∣ , (2.15)

satisfying,
trBRΦ = IA. (2.16)

Any positive semi-definite operator satisfying Equation (2.16) is the Choi-Jamio lkowski represen-
tation of some CPTP map. For infinite dimensional Hilbert spaces HA and HB however, the Choi
operator of a map Φ ∶ T(HA)→ T(HB) is often unbounded and the CJ representation needs to be
defined slightly differently. In this case, the CJ representation is defined instead as the sesquilinear
positive semi-definite form RΦ on HB ×HA = span{ψB ⊗ ψA ∶ ψB ∈HB , ψA ∈HA} that satisfies:

RΦ(ψB ⊗ ψA;φB ⊗ φA) ∶= ⟨ψB ∣Φ(∣ψA⟩ ⟨φA∣) ∣φB⟩ , (2.17)

where ∣ψ⟩ =
∞
∑
i=1

∣i⟩ ⟨i∣ψ⟩ represents complex conjugation in some fixed basis {∣i⟩i} of HA (ref).

In the case that the operator corresponding to the sesquilinear form RΦ is bounded, which
happens when the corresponding Hilbert spaces are finite or when the domain of the form is all of
HB ⊗HA, the operator R̂Φ ∈B(HBA) can be recovered as follows:

⟨ψB ∣⊗ ⟨ψA∣ R̂Φ ∣φB⟩⊗ ∣φA⟩ = RΦ(ψB ⊗ ψA;φB ⊗ φA), (2.18)

where the trace condition of Equation (2.16) becomes for any basis {∣j⟩}j of HB

∑
j

RΦ(iB ⊗ ψA; jB ⊗ φA) = ⟨ψA∣φA⟩ . (2.19)

Analogous to the finite case, any positive semi-definite sesquilinear form satisfying Equation (2.19)
uniquely defines a CPTP map Φ ∶ T(HA)→ T(HB) [18]. CP but non-TP maps in finite case satisfy
Equation (2.15) but not Equation (2.16), similar CP but non-TP maps in the infinite case satisfy
Equation (2.17) but not Equation(2.19).

CJ representation of a causal box ( [18], 2017 IEEE): A causal box, Φ = {ΦC ∶ T(Fχ(C)X )→
T(FCY )}C∈C(T ) satisfying Definition 2.3.1 can be equivalently represented by the set of positive

semi-definite sesquilinear forms RCΦ that satisfy the following condition:

For any states ψ
χ(C)
X , φ

χ(C)
X ∈ Fχ(C)X , ψ

χ̃(C)
X , φ

χ̃(C)
X ∈ F χ̃(C)X , ψCY , φ

C
Y ∈ FCY and any basis {∣j⟩j} of
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F C̃Y where Fχ(D)
X ≅ Fχ(C)X ⊗F χ̃(C)X and FDY ≅ FCY ⊗F C̃Y ,

∑
j

RDΦ(ψCY ⊗ j ⊗ ψχ(C)X ⊗ ψχ̃(C)X ;φCY ⊗ j ⊗ φχ(C)X ⊗ φχ̃(C)X )

=RCΦ(ψCY ⊗ ψχ(C)X ;φCY ⊗ φχ(C)X ) ⟨ψχ̃(C)X ∣φχ̃(C)X ⟩
(2.20)

A causal box can be equivalently described by the Choi-Jamio lkowski representation of the
maps ΦC and any set of positive semi-definite sesquilinear forms satisfying Equation (2.20) is a
valid causal box. See [18] for a proof of this statement.

2.4.2 Stinespring representation

Stinespring dilation theorem: For every CPTP map Φ ∶ L(HA) → L(HB) between finite-
dimensional Hilbert spacesHA andHB , there exists an isometry UΦ ∶HA →HBR ∈Hom(HA,HB⊗
HR) for some Hilbert space HR such that Φ(ρA) = trR(UΦρAU

†
Φ) holds for all ρA ∈ HA. UΦ is

called the Stinespring representation of the map Φ. Minimal Stinespring representations are unique
up to a unitary transformation. For further details, see [39].

The Stinespring representation generalises also to the infinite dimensional case which leads to
the characterisation of the Stinespring representation of a causal box as follows.

Stinespring representation of a causal box ( [18], 2017 IEEE): A causal box, Φ = {ΦC ∶
T(Fχ(C)X )→ T(FCY )}C∈C(T ) satisfying Definition 2.3.1 can be equivalently represented by the set of

minimal Stinespring representations {UΦ} satisfying the following condition.

For any C,D ∈ C(T ) with C ⊆ D and the minimal Stinespring representations UDΦ ∶ Fχ(D)
X →

FDY ⊗HR and UCΦ ∶ Fχ(C)X → FCY ⊗HQ of ΦD and ΦC respectively, there exists an isometry V ∶
HQ ⊗F χ̃(C)X → F C̃Y ⊗HR such that,

UDΦ = (ICY ⊗ V )(UCΦ ⊗ I χ̃(C)X ) (2.21)

A causal box can be equivalently described by the minimal Stinespring representations of the maps
ΦC and any set of such representations satisfying Equation (2.21) is a valid causal box. Again, we
refer the reader to [18] for a formal proof of this statement. A circuit diagram illustrating this as
given in [18] is reproduced here in Figure 2.5.

2.4.3 Sequence representation

By recursively decomposing a causal box Φ using Equation (2.21), Φ can be decomposed into an
infinite series of isometries {V1, V2, ...}. It is shown in [18] that for every causal box there exists
a special decomposition of this kind (i.e., the sequence representation) which has the following
property: each isometry Vi in the decomposition acts on inputs to the causal box produced within
a certain region in T , and produces corresponding outputs at a later, disjoint region in T , while
possibly updating the state of an internal memory in the process. This allows us to view the causal
box as a sequence of disjoint operations and talk about the behaviour of the causal box within each
“slice” of the set T . For example taking the set T to represent a time parameter, a causal box
that runs for 10 minutes can equivalently be described by its behaviour in every minute, or every
half a minute, or every second, or every infinitesimal fraction of a minute. It provides a causal
explanation/causal unraveling for the process represented by the causal box. That being said,
although a sequence representation exists for every causal box, it is not always easy to find one.
We now present the formal definition of the sequence representation as given in [18] and the figure
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Figure 2.5: Stinespring representation of a causal box (Figure 8 [18], 2017 IEEE): “For

any C,D ∈ C(T ) with C ⊆ D, a map ΦD ∶ T(Fχ(D)
X ) → T(FDY ) of a causal box with Stinespring

representation UDΦ can be decomposed into a sequence of two isometries UCΦ and V , where UCΦ is a

Stinesrping representation of ΦD ∶ T(Fχ(C)X )→ T(FCY )” [18]

illustrating the sequence representation of a causal box is also taken from [18] and reproduced here
as Figure 2.6.

Figure 2.6: Sequence representation of a causal box (Figure 10 [18], 2017 IEEE): By
repeatedly applying the Stinespring decomposition of Equation (2.21), Figure (2.5), one can de-
compose a causal box Φ into a finite/infinite sequence of isometries.

Definition 2.4.1 (Sequence representation [18], Definition 5.3, 2017 IEEE). Let CN ⊆ ... ⊆ Ci ⊆
...C1 = C be an finite or infinite (N =∞) sequence of cuts such that

N

⋂
i=1
Ci = ∅,and let Ti ∶= Ci/Ci+1.

A sequence representation of a map ΦC ∶ T(Fχ(C)X ) → T(FC)Y is given by such a set of cuts {Ci}Ni=1

along with a set of operators

{Vi ∶HQi+1 ⊗FTi+1

X → FTiY ⊗HQi}Ni=1,
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such that for all n ≥ 2,

UC1

Φ = (
n−1

∏
i=1

ICi+1

Y ⊗ Vi ⊗ IC2/Ci+1

X )(UCnΦ ⊗ IC2/Cn+1

X ) , (2.22)

where UCiΦ is a minimal Stinespring representation of ΦCi .

To ensure that the set of input positions to the operator Vi has an empty intersection with the
output positions, we can simply define Ci ∶= χi−1(C) in the sequence representation of any map ΦC .
With this, we will have χ(Ci)/χ(Ci+1) = Ti+1 and Ti+1 ∩ Ti = ∅.

2.5 Composition of causal boxes

Causal boxes can be composed by connecting output wires to input wires. To do so, to every causal
box Φ one assigns a set of ports, ports(Φ), through which messages are sent and received. Recall
that in the general definition of a causal box (Definition 2.3.1), it was defined with a single input
and output wire. This is because one can always use the isomorphism of Equation (2.2) to split a
single wire of dimension d into a tensor product of sub-wires whose dimensions sum up to d. For
example, a single output wire Y capable of carrying dY dimensional systems can be split into two
sub-wires, Y1 and Y2 capable of carrying dY1 and dY2 dimensional systems (with dY = dY1 + dY2),
which can in turn be connected to different causal boxes Ψ and Γ. Arbitrary composition of causal
boxes can be achieved by combining the two steps:

1. Parallel composition: Two causal boxes Φ and Ψ can be composed in parallel to obtain
a new causal box Γ = Φ ∥ Ψ whose input ports are given by the union of the input ports of
Φ and Ψ and the output ports are given by the union of the output ports of Φ and Ψ.

2. Loops: Selected output ports of the causal box Γ can be connected with suitable input
ports to form loops.

We now review the formal definition of these operations.

Definition 2.5.1 (Parallel composition [18], Definition 6.1, 2017 IEEE). The parallel composition
of a (dA, dC) causal box Φ = {ΦC}C∈C(T ) and a (dB , dD) causal box Ψ = {ΨC}C∈C(T ) is defined as

the (dA + dB , dc + dD) causal box Γ = Φ ∥ Ψ ∶= {ΦC ⊗ΨC}C∈C(T )

Composition of causal boxes can be achieved by looping the output of a causal box back to
one of its input. Lets consider a simple classical example to motivate the general definition that
also applies to the quantum case. Consider a classical causal box P given by the set of probability
distributions {P CDC∣AB} shown in Figure 2.7. The causal box has two classical input wires A and B

and two classical output wires C and D. The description of the new system, Q = {QCD∣A} resulting
from looping the output wire C to the input wire B can be obtained using:

QCD∣A(d∣a) =∑
c

P CCD∣AB(c, d∣a, c) (2.23)

One would naturally ask what guarantees that the new set of distributions {QCD∣A} would be

valid, normalised probability distributions. It is shown in [18] that the more general definition
(Definition 2.5.2) of loops for all causal boxes (classical, quantum and non-signalling) reduces to
Equation (2.23) for classical causal boxes and that the new system is a valid causal box (CPTP
map in the general case and normalised distribution in the classical case). In other words, the
fact that the system P obeys causality ensures that the new system Q obtained by looping P ’s
outputs to its inputs, is described by a valid set of normalised probability distributions. Loops
are in general, defined as follows. Note that only wires/sub-sires of the same dimension can be
connected in a loop.
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PCD∣AB

A D

B C
C↪B
ÐÐ→

PCD∣AB

A D

B C

Figure 2.7: Classical example for loop composition: A system with classical inputs A, B
and classical outputs C, D can be described by the probability distribution PCD∣AB . The new
system obtained by adding a loop from the output C to input B is then described by the distribu-
tion QD∣A = ∑

c
PCD∣AB(cd∣ac) and is a valid probability distribution as long as the system obeys

causality [18].

Definition 2.5.2 (Loops [18], Definition 6.3, 2017 IEEE). Let Φ = {ΦC ∶ T(Fχ(C)X )→ T(FCY )}C∈C(T )
be a (dA + dB , dC + dD)-causal box with dB = dC and CJ representation RCΦ(.; .). Let {∣kC⟩}k and
{∣lC⟩}l be any orthonormal bases of FCC and {∣kB⟩}k and {∣lB⟩}l denote the corresponding bases of
FCB, i.e., for all k and l, ∣kC⟩ ≅ ∣kB⟩ and ∣lC⟩ ≅ ∣lB⟩. Putting a loop from the output wire C to the
inout wire B results in the new system Ψ = ΦC↪B, is given by the set of maps

{ΨC ∶ T(FTA )→ T(FCD)C∈C(T )}

that have the CJ representation

RCΨ(ψD ⊗ ψA;φD ⊗ φA) =∑
k,l

RCΦ(kC ⊗ ψD ⊗ ψA ⊗ kB ; lC ⊗ φD ⊗ φA ⊗ lB), (2.24)

where ∣kB⟩ =
∞
∑
i=1

∣i⟩ ⟨i∣k⟩ represents complex conjugation in the basis {∣iB⟩}i of FTB used in the CJ

representation of ΦC.

These two operations can be combined to define the general composition operation:

Definition 2.5.3 (Composition operation [18], Definition 6.6, 2017 IEEE). Let Φ and Ψ be two
causal boxes with ports(Φ) and ports(Ψ) represent a particular partition of the input and output
wires into sub-wires. The set of pairs of ports of Φ and Ψ consisting of an output and input sub-
wire of the same dimension with each sub-wire appearing in not more than one pair is denoted by
P = {(AΦ

1 ,A
Ψ
1 ), ..., (AΦ

n ,A
Ψ
n )}. Then

Φ
P←→ Ψ ∶= (Φ ∥ Ψ)(A

Φ/Ψ
1 ↪AΨ/Φ

1 )...(AΦ/Ψ
n ↪AΨ/Φ

n ),

where A
Φ/Ψ
i ↪ A

Ψ/Φ
i denotes either AΦ

i ↪ AΨ
i or AΨ

i ↪ AΦ
i depending on the direction of connection

i.e., to which of the two causal boxes the input and output wires correspond to.

Causal boxes are closed under composition i.e., Φ
P←→ Ψ as defined above is a valid causal box

(Proof in [18]).

2.6 Special cases

Definitions 2.2.2 and 2.3.1 define the most general causal box. However, these definitions simplify
for certain special cases and we enumerate some of them below.
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1. Totally ordered sets: When the set T is totally ordered, the last condition of Defini-
tion 2.2.2 to ensure that every point in the set can be reached from any preceding point in
a finite number of causal steps namely, ∀C ∈ C(T ),∀t ∈ C,∃n ∈ NN, t ∉ χn(C) can be equiva-
lently replaced by the condition:
For χ ∶ T → T , inft>t0χ(t) < inft>t0t and supt<t0 < supt<t0t i.e., the strict inequality χ(t) < t
must also hold in the limit as t→ t0 for every point t0 ∈ T .

(a) If T = Q: the existence of a finite, non-zero delay δ between every input and correlated
output is sufficient to satisfy Definition 2.2.2.

(b) If T ⊆ R: the existence of a δu > 0 for every u ∈ T , such that for all t ≤ u, t−χ(t) > δu,
is equivalent to the fourth condition of Definition 2.2.2.

2. Finite causal boxes: In Definition 2.3.1, causal boxes are defined not by a single map
but as a set of maps in order to include systems that are well defined within every cut of T
but not on the entire T . Finite causal boxes are the special subset of causal boxes that can
be represented by a single map Φ ∶ T(FTX)→ T(FTY ) that is well defined on the entire set T .
In this case the definition of the causality function ensures that all of T can be reached in a
finite number of steps from any t ∈ T . For this special case, the causality function is defined
as follows (taken from Appendix C of [18]):

Definition 2.6.1 (Finite causality function). A causality function χ ∶ C(T ) → C(T ) is a
finite causality function if for every t ∈ T there exists an n ∈ N such that t ∉ χn(T ).

The trace condition for a finite causal box Φ ∶ T(FTX) → T(FTY ) then becomes trT /C ○ Φ =
ΦC ○ trT /χ(C).

3. Minkowski space-time: When the set T corresponds to Minkowski space time, all possible
cuts are bounded cuts since any two Minkowski space-time points always have a joint causal
future that is non-empty.

2.7 Applications

The causal box framework is a general framework for modelling systems that obey causality and
are closed under composition. The framework takes a top-down approach where one starts at
the highest level of abstraction and introduces only the minimum necessary details/physical spec-
ifications at every lower level. For this reason, causal boxes find application in several areas of
mathematical physics and information theory as listed in the conclusions section of [18].

For example, causal boxes, being closed under composition naturally lend themselves to mod-
elling composable cryptographic security of relativistic quantum protocols [1]. Cryptographic
protocols are said to be composably secure if they remain secure even when used as a subroutine
in arbitrary protocols. By combining the causal boxes framework with the abstract cryptography
framework [40] and taking set T to be Minkowski space-time, in [1] we develop a new frame-
work for modelling composable security of relativistic and quantum protocols against quantum
and non-signalling adversaries that is also capable of modelling protocols involving superpositions
of causal orders. We then prove novel possibility and impossibility results in relativistic quantum
cryptography within this framework.

Superpositions of causal orders is a peculiar feature of quantum theory that does not arise
classical physics. There are many frameworks for modelling such processes as well as more general
processes with indefinite causal order. One such framework namely the process matrix framework
[16] models processes that can occur if quantum theory is valid within local laboratories of agents
while assuming nothing about the global order of operations performed by different agents. The
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framework models superpositions such as the quantum switch as well as more general processes
that violate so-called causal inequalities [24] which despite being compatible with known physical
laws have never been observed in experiments. Causal boxes have a notion of global order hard
coded in the framework in the form of the partially ordered set T and can thus not violate causal
inequalities which are derived by dropping the assumption of a fixed global order.

Further, causal boxes could also find interesting applications in the study of quantum complex-
ity and indeterministic systems as explained in [18].
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Chapter 3

The process matrix framework [16]

The first ingredient of the process matrix framework is a local quantum laboratory within which
agents can perform all operations allowed by quantum theory on quantum states that receive from
an environment outside the lab, and they can also output a quantum state to the environment.
There can be many such local labs within which operations may be ordered according to an agent’s
local clock but the framework makes no assumptions about any global ordering between the various
labs i.e., it is not assumed that these labs are embedded into a fixed space-time structure. The
process matrix can then be thought of as a generalised quantum state (density matrix) that models
the “outside environment” of the local labs and contains information about how these local labs
may be “connected”. Causality is then defined in an operational manner without reference to a
background space-time: If an agent A is able to influence the measurement outcomes of agent B’s
operations by preparing suitable quantum states in her local lab, but agent B is never able to
influence A’s outcomes through any choice of preparation or operation in his local lab, then A is
said to causally precede B. We now review the formal definitions of local operations and process
matrices and discuss some methods of certifying the non-classicality of causal structures.

3.1 Local quantum laboratory

Each party/agent acts in a local quantum laboratory associated with the input Hilbert space HAI
of dimension dAI and output Hilbert space HAO of dimension dAO . The dimensions of the input
and output spaces need not be the same since the agents could include ancillas prepared in their
laboratories or discard certain sub-systems prior to output. However, the Hilbert spaces are
assumed to be finite dimensional. The operations performed by agents in their local labs are
described by quantum instruments [16,23] which are a generalisation of POVMs (positive operator
valued measures). Instruments also describe transformations applied to a system in addition to
generalised quantum measurements and they reduce to POVMs for 1 dimensional output spaces.

Definition 3.1.1 (Quantum instrument [23]). A quantum instrument J A = {MA
x }mx=1 is a collec-

tion of completely positive (CP) maps MA
x ∶ AI → AO labelled by the local measurement outcome

x, having the property that
m

∑
x=1

MA
x is CPTP.

Here, following the notation of [23], AI and AO represent the set of all hermitian, linear operators
over HAI and HAO respectively. In particular, when the classical measurement setting a is used
to characterise the operations, the instrument corresponding to each setting is denoted as J Aa =
{MA

x∣a}mx=1.
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AI

AO

MA
x∣a

a

x A

Figure 3.1: A local quantum laboratory, A: The local laboratory labelled as A belongs to the
experimenter, Alice. The lab can take in an input quantum system belonging to the input space
AI from the outside environment. Alice can then input her local setting choice, a into her device
which, depending on this setting performs a CPTP map MA

x∣a on the input system, which can

have a classical outcome x (as measured on some part of the input system) along with an output
quantum system (the part that was not mesured). The output after operation by the CPTP map
would be another quantum system belonging to the output space AO which Alice could then send
back into the “outside environment” and she will no longer have control of this system. Now
that this local lab has caught your attention, future diagrams of local labs will no longer have a
cheerful Alice waving at us; we will also not depict the local settings and outcomes explicitly in
diagrams for the sake of simplicity. Henceforth, we will simply represent local labs as boxes with
their corresponding name (here, A) along with the input and output arrows corresponding to the
spaces AI and AO.

Choi Jamio lkowski (CJ) representation of local operations

Every completely positive (CP) map M ∶ I → O can be equivalently represented as a positive
semi-definite matrix or the CJ matrix in the joint input-output space I ⊗O; this is the essence of
the CJ isomorphism. In the following sections, we will mostly work in this representation since it is
usually easier to work with the CJ representation of a map rather than the map itself. We applied
this to causal boxes in Section 2.4 to obtain the CJ representation of a causal box. Likewise,
quantum instruments being a set of CP maps also have a corresponding CJ representation. The
CJ matrix of a CP map MA ∶ AI → AO is defined as [23]:

MAIAO ∶= [I ⊗MA(∣1⟫⟪1∣)]T ∈ AI ⊗AO (3.1)

where I is the identity map, ∣1⟫ = ∣1⟫AIAI ∶= ∑j ∣j⟩
AI ⊗ ∣j⟩AI ∈ HAI ⊗HAI is a (non-normalised)

maximally entangled state and T denotes partial transpose with respect to the chosen orthonormal
basis {∣j⟩AI}j of HAI . Note that the the above CJ representation of a quantum instrument has
an additional partial transpose as compared to the CJ representation introduced in Section 2.4.
This is chosen to obtain a simpler representation of the process matrix (Section 3.2) and does not
change the meaning or implication of the representation. A map MA is completely positive (CP)
if its CJ representation is positive semi-definite and is trace preserving (TP) if trAOM

AIAO = 1AI
holds (where trAO denotes the partial trace over AO and 1AI denotes the identity matrix in AI).
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A quantum instrument J A = {MA
x }mx=1 can be equivalently represented by the set {MAIAO

x }mx=1

satisfying the conditions:

MAIAO
x ≥ 0, trAO

m

∑
x=1

MAIAO
x = 1A1 (3.2)

We now review some properties of the CJ isomorphism as presented in Appendix A1 of [23]
which will be useful for the discussion in Chapter 4. In particular, it is useful to differentiate
between pure and mixed CJ representations; one provides a representation for linear operators on
pure states and the other for maps on density matrices. As we will see, the pure representation
takes a more simple form as compared to the general representation, and the former will suffice
for describing the quantum switch (Chapter 4).

The pure CJ representation ( [23]): For a linear operator A ∶ HAI → HAO , the CJ rep-
resentation (or CJ vector in this case) is defined as follows:

∣A∗⟫AIAO ∶= 1⊗A∗∣1⟫, (3.3)

where ∣1⟫ ≡ ∣1⟫AIAI ∶= ∑j ∣j⟩
A1 ⊗ ∣j⟩AI ∈ HAI ⊗HAI (with ⟪1∣ = ∣1⟫†) where ∗ denotes complex

conjugation with respect to the chosen orthonormal basis {∣j⟩AI}j of HAI . The inverse map is then

given by A ∣ψ⟩ = [⟨ψ∣AI ⊗ 1AO ⋅ ∣A∗⟫AIAO ]∗. The additional complex conjugation in the definition
here (as compared to the usual definition of the CJ representation, Equation (2.15)) is chosen to
obtain a simpler representation of the process matrix (Section 3.2).

For example, if the linear operator A is a unitary U = ∑
jk
ujk ∣j⟩ ⟨k∣, its CJ vector is given as

∣U∗⟫AIAO ∶= 1⊗U∗∣1⟫ =∑
jk

u∗jk ∣k⟩
AI ∣j⟩AO . (3.4)

In this case, U being a unitary is a necessary and sufficient condition for the state ∣U∗⟫AIAO
being maximally entangled [23]. The general case of Equation (3.1) reduces to the particular case
of Equation (3.3) for operators of the form MA(ρ) = AρA† in which case MAIAO = ∣A∗⟫⟪A∗∣.
Some examples (Appendix A1 [23])

1. The CPTP map MA(σ) corresponds to preparing a normalised state ρ at the output ir-
respective (and independently) of the input state σ and its CJ representation is MAIAO =
1A1 ⊗ (ρT )AO . Note the transpose on ρ.

2. The CP (non-TP) map MA(ρ) = tr[Eρ] that gives the probability of observing a POVM
element E in a measurement has an output space of dimension dAO = 1 and is completely
described by the CJ representation MAI = EAI .

3. The CP (non-TP) map MA(σ) = ρ tr[Eσ] that represents the map when a POVM element
E is measured on the state σ in AI and a state ρ is prepared in AO has the CJ representation
MAIAO = EAI ⊗ (ρT )AO .

What we have reviewed so far describes the possible local operations that agents may carry out
in their local quantum labs. We will now see how one can calculate joint probabilities involving
the settings and outcomes of different agents and what these probabilities can tell us about the
nature of interactions between the different agents.
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3.2 Process matrices

The probability PX1,...,XN ∣A1,...,AN (x1, ..., xN ∣a1, ...,AN) that the N agents Ai observe the outcomes
x1 ∈ X1, ..., xN ∈ XN for a choice of measurement settings a1 ∈ A1, ..., aN ∈ AN respectively is a

function of the corresponding CP maps MA1

x1∣a1
, ...,MAN

xN ∣aN . As shown in [16, 23], this can be
expressed using the CJ representation of the maps as follows

PX1,...,XN ∣A1,...,AN (x1, ..., xN ∣a1, ...,AN) = P (MA1

x1∣a1
, ...,MAN

xN ∣aN )

= tr [(MA1
IA

1
O

x1∣a1
⊗ ...⊗MANI A

N
O

xN ∣aN )W ]
(3.5)

for a hermitian operatorW ∈ A1
I⊗A1

O⊗...⊗ANI ⊗ANO which is known as the process matrix. The set of
valid process matrices is characterised by the set of all such hermitian operators that yield positive
normalised probabilities for all possible operations including ancillas, tracing out systems and
sharing entangled states between multiple agents. It is shown in [23] that this requirement can be
expressed in terms of the following conditions that characterise the set of all valid process matrices
W . In the following, the notation involving a pre-subscript X with W i.e., XW represents tracing

out the sub-system X and replacing it with the normalised identity operator: XW = 1X

dX
⊗ trXW .

W ≥ 0 (3.6a)

trW = dO (3.6b)

W = LV (W ) (3.6c)

where dO = dA1
O
...dAN

O
and LV (W ) = [1−∏i(1−AiO+AiIAiO)+∏iAiIAiO]W . LV is a projector onto the

linear subspace LV = {W ∈ A1
I⊗A1

O⊗ ...⊗ANI ⊗ANO ∣W = LV (W ). We now discuss specific examples
and particular cases in the following sections which will further clarify this definition.

3.2.1 Pure process matrices [23]

If the process matrix turns out to be a rank-one projector [23], W = ∣w⟩ ⟨w∣ and the CJ opera-
tors representing the local operations are also rank-one projectors (e.g., unitaries and projective
measurements followed by pure re-preparations), one can simplify the problem by working at the
level of “process vectors” (such as ∣w⟩) instead of process matrices W and probability amplitudes
instead of probabilities. If the local operations of the N labs A1, ...,AN are represented by the CJ

vectors ∣A∗
1⟫A

1
IA

1
O , ..., ∣A∗

N⟫ANI ANO , the probability given by the general rule, Equation (3.5) reduces
to the modulus squared of the following probability amplitude. This is true upto a global phase
which can be chosen to be 0.

∣w⟩A
1
O...A

N
I = ∣U1⟫A

1
OA

2
I ⊗ ...⊗ ∣UN⟫A

N−1
O ANI (3.7)

A process matrix for N agents consisting of unitary channels from each agent Ai to the agent Ai+1

is represented as

(⟪A∗
1 ∣A

1
IA

1
O ⊗ ...⊗ ⟪A∗

N ∣A
N
I A

N
O ) ⋅ ∣w >A

1
IA

1
O...A

N
I A

N
O , (3.8)

where ∣Ui⟫A
i
OA

i+1
I = (I ⊗ U)∣1⟫. This represents a pure, causally ordered process matrix with the

order A1 ≺ A2 ≺ ... ≺ AN .
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AI
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DO
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Figure 3.2: Process matrices: Within the local laboratories A, B, C and D, agents can perform
local quantum operations on their corresponding input system and later output another system.
No assumption is made about the global ordering of different agents. The process matrix W is an
object that contains information about the “outside world”, in particular, it contains information
about how the different local laboratories are connected (e.g., which lab can signal to which other
labs). The process matrix may allow different local labs to be connected in a superposition of
orders. a) The process matrix W1 connects the labs in the fixed order D ≺ A ≺ B ≺ C where A ≺ B
means that A can signal to B. b) The process matrix W2 connects the labs in the fixed order
D ≺ B ≺ A ≺ C. c) The process matrix W3 represents the superposition of the two fixed orders
D ≺ A ≺ B ≺ C (solid red arrows) and D ≺ B ≺ A ≺ C (dashed blue arrows) given by the causally
ordered process matrices W1 and W2 respectively and is itself a valid process matrix. In fact, the
process matrix of the quantum switch [23] given in Equation (4.7) achieves exactly this. Note that
this is in contrast with quantum circuits (e.g., Figure 1.3) where there is always a fixed temporal
order of operations.

3.2.2 Non-signalling and signalling process matrices [23]

Here we review the special cases where a process matrix does not allow signalling between any of
the agents and where it allows signalling in a fixed direction between agents (for example A can
signal to B but B cannot signal to A). When a process matrix W is non-signalling, it does not
contain any channels connecting the output space of any of the agents to the input of another and
thus acts trivially on all output spaces. In this case, tracing out all the output subsystems should
leave the process matrix unchanged [23] and the process matrix is characterised solely by the joint

state shared by the different agents i.e., W = A1
O
...AN

O
W = ρA1

I ...A
N
I ⊗1A1

O...A
N
O . This corresponds the

N parties receiving the fixed, joint quantum state ρA
1
I ...A

N
I from the outside environment and each

of them performing their local measurements on their part of the state, without communicating
to each other. In this case, the probability rule, Equation (3.5) reduces to the usual Born rule

P (MA1

x1∣a1
, ...,MAN

xN ∣aN ) = tr [(EA
1
I

x1∣a1
, ...,E

ANI
xN ∣aN)ρ] ,

where E
AiI
xi∣ai ∶= trAi

O
M

AiIA
i
O

xi∣ai are the POVM elements corresponding to the quantum operation

carried out by the different agents.
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In the situation where there are N parties A1, ...,AN , where a party Ai can only signal to a
party Aj if i < j, the corresponding process matrix W must satisfy the following conditions (derived
in [23])

W = AN
O
W

AN
I
AN
O
W = AN−1

O
AN
I
AN
O
W

.

.

.

A2
I
A2
O
...AN

I
AN
O
W = A1

O
A2
I
A2
O
...AN

I
AN
O
W.

(3.9)

In this case, the process W is compatible with the causal order A1 ≺ A2 ≺ ... ≺ AN and denotes

the causally ordered process W =WA1≺A2≺...≺AN . It is shown in [23] that such process (including
permutations of the order of parties) can be represented as quantum circuits.

3.2.3 Further examples of process matrices [10]

The following examples are taken from [10]. They illustrate what the process matrices and prob-
ability rules look like for certain simple situations.

1. Single laboratory
In the case of a single laboratory A, the most general process matrix is simply WAI = ρA1 ≥ 0.
While modelling a single lab, it is enough to consider only a non-trivial input space and a triv-
ial output space: a process matrix describing a single lab must act trivially on its output space
since there are no other labs for it to be ”connected” to through the outside environment i.e., the
process matrix. In this case, CP maps reduce to POVM elements EAI ≥ 0 and the generalised
Born rule of Equation (3.5) reduces to the usual Born rule: P (RAI ) = tr[Eρ]. This describes the
situation where the lab A receives the quantum state ρ from the outside environment, performs a
measurement on it and doesn’t send anything out into the “environment”.

The process matrix describes the “outside environment” of the agents and including the prepa-
ration ρ in the description of the process matrix W corresponds to the state being prepared by an
environment outside the control of the lab A. One can also consider a situation where an agent
prepares his/her choice of state. This can be done by considering an additional lab B with a non
trivial output space BO where an agent can choose to prepare one of the states ρi from a set
which would correspond to the instruments with the CJ representation {(ρBOi )T }i. Lab B can
then send the prepared state to lab A where it is measured and the process matrix would simply
be W̃BOAI = ∣1⟫⟪1∣BOAI , if the lab B is connected to the lab A through an identity channel
(in general, the process matrix could contain an arbitrary channel.). The generalised Born rule,
Equation (3.5) now becomes

P (EAI , (ρBOi )T ) = tr [(EAI ⊗ (ρBOi )T ) ∣1⟫⟪1∣BOAI ] = tr[Eρi] (3.10)

This reduces to the case of the single lab A and fixed, oustide preparation ρ if B prepares ρi = ρ∀i.
Here, the fact that B influences A is seen by noting that the probability of observing any POVM
element E ≠ 1 in A’s lab depends non-trivially on B’s instrument {(ρBOi )T }i and the process
matrix is compatible with the causal order B ≺ A.

2. Common cause
Consider two laboratories A and B with non trivial input and output spaces. As per the discus-
sion in Section 3.2.2, a process matrix of the form WAB = ρAIBI ⊗ 1AOBO describes the situation
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where the two labs share the bipartite state ρAB and are non-signalling. Again the shared state
is prepared by an “outside environment” and is fixed. In order to vary the state preparation, we
can again consider an additional lab C with trivial input space and non-trivial output space that
prepares the bipartite state and the state gets distributed through an identity channel to the labs
A and B. Since C can prepare a bipartite state, its output space decomposes as CO = C1

O ⊗ C2
O,

where the sub-systems C1
O and C2

O are isomorphic to AI and BI respectively. The corresponding

process matrix is given by W̃ABC = ∣1⟫⟪1∣C1
OAI ⊗ ∣1⟫⟪1∣C2

OBI ⊗ 1AOBO .

A B

ρ

W

AI

AO

BI

BO

(a)

A B

C

W̃

AI

AO

BI

BO

C1
O C2

O

CI

(b)

Figure 3.3: Modelling common cause with process matrices (inspired by Figure 9, [10]):
a) The process matrix WAB = ρAIBI ⊗ 1AOBO describes two non-signalling laboratories A and B
that share a fixed state ρ prepared in their common past. The “earth ground” symbol represents
the identity matrix. b) The freedom of preparation choice can be modelled by considering a third
lab C that prepares and distributes the states to A and B which is described by the process matrix

W̃ABC = ∣1⟫⟪1∣C1
OAI ⊗ ∣1⟫⟪1∣C2

OBI ⊗ 1AOBO . This freedom allows C to modify the correlations
between A and B by varying his preparation and thus, C is a common cause of A and B.

3. Direct and indirect causes
The previous example of the common cause was that of a bipartite non-signalling process matrix.
Here we consider a bipartite, one-way signalling scenario described by the process matrix WAB =
ρAI ⊗ ∣U⟫⟪U ∣AOBI ⊗1BO , where U is a unitary matrix and ∣U⟫ = I ⊗U ∣1⟫. The probability rule of
Equation (3.5) now reduces to tr[(MAIAO⊗NBIBO)WAB] = tr[FUM(ρ)U †], where F is obtained
by tracing B’s output subsystem from the map N implemented in B’s lab: FBI ∶= trBONBIBO and
M is the map that the matrix MAIAO is the CJ isomorphism (Equation (3.1)) of. This describes a
situation where a state ρ is first measured in lab A and after passing through the unitary channel
U connecting the labs of A and B, is measured again in B’s lab. For arbitrary U and ρ, A can
signal to B with appropriate choice of instruments and hence this represents a causally ordered
process with the order A ≺ B.

Again, the connecting mechanism which has a definite order and direction can instead be
modelled as an event in a third lab C. For example, if the labs were initially connected by a
unitary channel in the bipartite process matrix, this can be seen as a tripartite process matrix
where the intervening lab, C performs the corresponding unitary operation. This gives the new
process matrix W̃ABC = ρAI ⊗ ∣1⟫⟪1∣AOCI ⊗ ∣1⟫⟪1∣COBI ⊗ 1BO . The unitary evolution is now
represented by the single quantum instrument of C, ∣U∗⟫⟪U ∗ ∣CICO . Note the additional ∗ that
appears in the CJ representation when the operation is modelled as an instrument in a local lab,
as compared to when it appears as a channel in the process matrix WAB . In this example, the
unitary connecting A’s output to B’s input is not fixed (/hard coded in the process matrix) but
can be freely chosen by the intervening lab C. Thus C can break the flow of information from
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A to B by using a different instrument1; for instance, if C applied the maximally noisy channel
1C/dCO , then no information from A can travel to B and no choice of instrument of A can affect
the probability for any POVM element in B. Thus A is a direct cause of B given the process
matrix WAB but is an indirect cause given the process matrix W̃ABC [10].

The examples illustrate how process matrices are well-suited for quantum causal modelling [10]
as well as for quantum causal discovery algorithms [12]. In classical causal modelling, directed
acyclic graphs (DAGs) are widely used to represent the causal structure between a set of random
variables (RV) where each node of the graph represents a classical RV and the directed edges
represent causal influences. These causal models allow for interventions to be performed on the
nodes that change the value of the corresponding RV and also provide a method for calculating the
probabilities distribution of other RVs conditioned on the outcome of the intervention on a given
set of RVs. As seen in the above examples and the corresponding figures, process matrices allow
similar methods to be adapted to the quantum and more general cases. Events in local labs are
now taken to represent the nodes of the DAG and the probabilities in the generalised Born rule
are easily adapted to define conditional probabilities of interventions [10]. Further, analogous to
the trace conditions obtained for signalling and non-signalling process matrices in Section 3.2.2, it
is possible to obtain trace conditions for more general causal structures with N agents involving
combinations of direct and common cause scenarios. The quantum causal model of [9] which uses
the standard quantum formalism (and not the process matrix framework) provides a more general
description of the quantum common cause scenario as compared to the quantum causal model
of [10] where they provide examples and model quantum common causes whose output space
does not factorise into a tensor product, CO = C1

O ⊗ C2
O as shown in Figure 3.3b. Note however

that both quantum causal models [10] and [9] can only describe processes with a well-defined
causal order and not a superpositions of orders. This is the basis for the first quantum causal
discovery algorithm [12]. The algorithm can discover the causal structure of causally ordered as
well as probabilistic mixtures of causally ordered processes but there is no known method for causal
discovery of “indefinite causal/temporal orders” such as the quantum switch.

Remark. Note that process matrices do not allow for causal loops [16], local or global. No local
loops imply that no channel connecting the output and input of the same party can appear in a
valid process matrix (for example a term of the kind ∣U∗⟫AOAI for some unitary U). No global
loops imply that terms of the type ∣U∗⟫AOBI ∣V ∗⟫BOAI which connect A’s output to B’s input and
B’s output to A’s input are forbidden. Note however that the same process matrix can contain
these terms in certain kinds of superposition such as the process matrix for the quantum switch,
Equation (4.7). A detailed explanation of allowed and forbidden process matrix terms can be found
in [16].

So far we have only considered examples of causally ordered processes. However, process matri-
ces can also contain superpositions of causal orders such as the quantum switch where the causal
order of agents is coherently controlled by an additional quantum system. We now discuss the
important concepts and tools that allow us to distinguish between causally ordered and unordered
processes in a device independent (causal inequalities) or device dependent (causal witnesses) way.

3.3 Causal and non-causal processes: causal inequalities

Since the process matrix framework allows for classical, quantum and possibly more general pro-
cesses as well, a natural question to ask is whether one can find certificates of non-classicality
(analogous to Bell inequalities [2, 41]) for process matrices solely in terms of the correlations they
produce. Causal inequalities [24] do exactly this: they divide the landscape of process matrices into

1In a quantum causal model [10], this represents interventions that break the causal arrow from A to B.
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two categories, causal and non-causal processes i.e., those that do not violate a causal inequality
and those that do. This is analogous to Bell inequalities that divide hidden variable theories into
the categories of (Bell) local and (Bell) non-local i.e., those that do not violate Bell inequalities and
those that do. Note that both causal inequalities as well as Bell inequalities are device independent
tests of non-classicality: both certify non-classicality of an underlying process solely based on the
input-output statistics produced by the process without any assumptions about the underlying
theory or devices used.

3.3.1 Bipartite causal processes and the (L)GYNI game [24]

Causal correlations [24]
In this section, we will first describe the simplest causal inequality (which can also be expressed as
a bound on the winning probability of a bipartite game) as originally presented in the paper [24].
Then we will make the assumptions more explicit by comparing them with the assumptions in the
simplest Bell scenario (the bipartite, CHSH game [42]).

Consider an experiment [24] with two parties/agents, Alice and Bob, each of them having
control over a local quantum laboratory. Both parties open their lab to let some physical system
in, they then interact with it and send a physical system out. This is assumed to happen only
once during each run of the experiment. They can choose the classical inputs labeled by a and b
and return the classical outputs x and by respectively. All inputs and outputs are assumed to have
only a finite number of possible values. The joint conditional probability distribution p(x, y∣a, b)
describes the input-output correlations established by Alice and Bob through the experiment. Now,
if at each run of the experiment, all events of Alice precede all events of Bob, Alice could send her
input and output to Bob, but not vice versa. This situation is denoted as A ≺ B and there cannot
be any signalling from Bob to Alice in this case. The corresponding correlation produced in this
case, denoted as pA≺B , must be such that Alice’s marginal distribution is independent of Bob’s
choice of input and we have

∀a, b, b′, x, pA≺B(x∣a, b) = pA≺B(x∣a, b′), (3.11)

where the marginal is defined as pA≺B(x∣a, b(′)) = ∑y pA≺B(x, y∣a, b(′)). Similarly, if all events of

Bob precede all events of Alice i.e., B ≺ A, the correlations pB≺A must satisfy for pB≺A(y∣a(′), b) =
∑x pB≺A(x, y∣a(

′), b)
∀a, a′, b, y, pB≺A(y∣a, b) = pB≺A(y∣a′, b), (3.12)

Note that non-signalling correlations p(x, y∣a, b) satisfy both Equations (3.11) and( 3.12) and
are hence compatible with both A ≺ B and B ≺ A. More generally, we can consider convex mixtures
of the above, one-way signalling bipartite distributions to obtain correlations of the form

p(x, y∣a, b) = qpA≺B(x, y∣a, b) + (1 − q)pB≺A(x, y∣a, b) (3.13)

for some probability q ∈ [0,1]. According to [23, 24, 43], a bipartite probability distribution
p(x, y∣a, b) is called “causal” if it can be written in the form of Equation (3.13) for some q ∈ [0,1]
and non-negative, normalised distributions pA≺B and pB≺A satisfying Equations (3.11) and (3.12)
respectively. These are correlations that are obtained when every run of the experiment is com-
patible with a definite causal order A ≺ B or B ≺ A which may vary in each run, being determined
probabilistically for each run of the experiment. As non-signalling contributions can be included
in either pA≺B or pB≺A, the decomposition Equation (3.13) is in general not unique.

The distributions p(x, y∣a, b) satisfying Equation (3.13) correspond to the convex hull (i.e.,
non-trivial probabilitis mixtures) of the ordered correlations pA≺B and pB≺A. They form a convex
polytope which is known as the causal polytope [24]. Just like the Bell local polytope [41, 44], the
causal polytope has certain trivial facets (representing simply the non-negativity or normalisation
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constraints) as well as non-trivial facets (representing causal inequalities). Analogously, causal
inequalities that do not tightly bound causal correlations (3.13) do not correspond to facets of a
causal polytope.

A bipartite process matrix WAIAOBIBO that produces the correlations p(x, y∣a, b) (calculated
using the probability rule (3.5)) satisfying Equation (3.13) for all choices of instruments {MA

x∣a}x,a
and {MB

y∣b}y,b of Alice and Bob respectively is called a bipartite, causal process matrix [24,43]. Note

however that Equation (3.13) does not invoke the underlying process matrix at all, it represents
constraints only at the level of the probabilities observed in an experiment. A violation of a causal
inequality guarantees in a device independent way that the observed correlation is incompatible
with a definite causal order i.e., that it is non-causal.

The simplest causal inequality [24]
The minimum number of parties required to talk about a causal order between parties is two.
Further, both parties must have non-trivial inputs and outputs i.e., their inputs and outputs must
be able to take on at least 2 different values each. If one of the parties had a trivial input or
output space, then one of the one-way signalling conditions Equation (3.11) or (3.12) would def-
initely be satisfied and the distribution would always be compatible with a single definite causal
order and hence an extremal point of the causal polytope (see Figure 3.4 for an example). The
simplest, non-trivial causal polytope would thus have two parties with inputs and outputs having
two different values each (labelled by 0 and 1), analogous to the simplest Bell polytope (the CHSH
polytope [42, 44]). In [24] it is shown that this polytope has 112 deterministic vertices and 48
facets of which 16 are trivial (corresponding the the non-negativity constraints p(x, y∣a, b) ≥ 0).
The remaining 32 non-trivial facets are divided into two groups of 16 facets each, correspond-
ing to relabelings of the inequalities (3.14) and (3.15) [24]. These constraints represent an upper
bound on the winning probability of the guess your neighbour’s input (GYNI) and “lazy” guess
your neighbor’s input (LGYNI) games achievable by winning strategies that produce correlations
satisfying Equation (3.13).

1

4
∑

a,b,x,y

δx,bδy,ap(x, y∣a, b) ≤
1

2
(3.14)

1

4
∑

a,b,x,y

δa(x⊕b),0δb(y⊕a),0p(x, y∣a, b) ≤
3

4
(3.15)

where ⊕ denotes addition modulo 2.

1. GYNI: GYNI is a bipartite game where two parties, Alice and Bob pick uniformly random
inputs a and b (i.e., p(a, b) = 1

4
) and they have to output a guess of the other party’s input

i.e., they win the game if x = b and y = a. A bound on the winning probability for this
game, for strategies compatible with a definite causal order is obtained in a simple way [24].
If the causal order is A ≺ B, Bob cannot signal to Alice and Alice cannot know anything
about Bob’s input bit b and hence p(x = b) = 1

2
which gives p(x = b, y = a) ≤ 1

2
. Similarly

for the causal order B ≺ A, Alice cannot signal to Bob and again, p(x = b, y = a) ≤ 1
2

since

p(y = a) = 1
2
. Any convex mixture of these two orders cannot increase the bound on the

winning probability and we have

pGYNI ∶= p(x = b, y = a) ≤
1

2
, (3.16)

which is the same as Inequality (3.14) for uniform input bits.

2. LGYNI: The LGYNI game is the same as GYNI (also with uniform inputs) but for “lazy”
Alice and Bob: each party outputs a guess of the other party’s input only when their input
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causal
distributions

I1

I2

I3

Figure 3.4: An example of a causal polytope: The causal polytope (blue) is a convex polytope
containing the set of all causal distributions for a given scenario (fixed number of parties, settings
etc.). These are the distributions that are compatible with a fixed causal order (or a classical
mixture thereof). A causal inequality is a hyperplane that contains the entire causal polytope on
one side: if a distribution is found to be on the side of the hyperplane not containing the causal
polytope, it is guaranteed to be “non-classical” in the causal sense i.e., it can’t be written as a
classical mixture of ordered distributions and is said to be non-causal [24, 43]. In this figure, the
hyperplane I1 can correspond to a facet causal inequality since it is one of the facets of the causal
polytope while the hyperplane I2 can also represent a causal inequality, but not a facet causal
inequality. On the other hand, the hyperplane I3 can definitely not be a causal inequality because
it does not contain the entire polytope on one side and thus its violation (on either side) would not
certify non-classicality of the underlying distribution. The causal polytope can be represented in
the vertex representation i.e., as the convex hull of its vertices (deterministic distributions, in this
case, 5 of them) or in the facet representation i.e., as the set of distributions satisfying the non-
negativity and normalisation constraints and not violating any of the corresponding facet causal
inequalities (in this case, a total of 5 constraints, inclusive of non-negativity and normalisation).
Note that not all facets of a causal polytope correspond to a facet causal inequality, some correspond
to the non-negativity and normalisation constraints that need to be obeyed by all valid probability
distributions.

is 1 and outputs an arbitrary bit when their input is 0. The winning probability is bounded
in this case as follows and can be obtained with similar reasoning as in the GYNI case.

pLGYNI ∶= p(a(x⊕ b) = 0, b(y ⊕ a) = 0) ≤ 3

4
(3.17)

which is the same as Inequality (3.15) for uniform input bits.

Violation of causal inequalities in the process matrix framework
The inequalities (3.16) and (3.17) are formulated in a theory/framework independent manner.
In [24], it is shown that they are violated within the process matrix framework. It was found that
for two dimensional input and output systems i.e., dAI = dAO = dBI = dBO = 2, the process matrix

W = 1

4
[1⊗4 + Z

AIZAOZBI1BO +ZAI1AOXBIXBO

√
2

] (3.18)

with the operations
MAIAO

0∣0 =MBIBO
0∣0 = 0, (3.19a)
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MAIAO
1∣0 =MBIBO

1∣0 = 2 ∣Φ+⟩ ⟨Φ+∣ , (3.19b)

MAIAO
1∣0 =MBIBO

1∣0 = ∣0⟩ ⟨0∣⊗ ∣0⟩ ⟨0∣ , (3.19c)

MAIAO
1∣1 =MBIBO

1∣1 = ∣1⟩ ⟨1∣⊗ ∣0⟩ ⟨0∣ , (3.19d)

with {∣0⟩ , ∣1⟩} denoting the eigenbasis of the Pauli Z and ∣Φ+⟩ ∶= (∣00⟩ + ∣11⟩)/
√

2 violate the
inequalities (3.16) and (3.17) with the correlations [24]

pGYNI =
5

16
(1 + 1√

2
) ≈ 0.5335 > 1

2
,

pLGYNI =
5

16
(1 + 1√

2
) + 1

4
≈ 0.7835 > 3

4
.

(3.20)

As explained in [24], the strategy corresponding to the instruments given in Equations (3.19a)-
(3.19d) for the process matrix of Equation (3.18) is: when their input is 0, Alice and Bob simply
transmit their incoming physical system, untouched (2 ∣Φ+⟩ ⟨Φ+∣ being indeed the CJ representation
of an identity channel), and output the value 1; when their input is 1, Alice and Bob perform a
measurement in the Pauli Z basis, whose result defines their classical output, and send out the
fixed state ∣0⟩ ⟨0∣. Analogously to the CHSH case, one would be interested in finding the maximal
violation of these inequalities by solving a suitable optimisation problem and provide “Tsirelson-
like” [45] bounds for the same. The important findings and conclusions of [24] in this regard are
listed below.

1. The optimisation problem for optimising the violations of the causal inequalities (3.16) and
(3.17) for some input and output Hilbert spaces of a given dimension turns out to be non-
convex, contrary to the CHSH case [41,42,44].

2. From the numerical results of [24], it is conjectured that the maximal violations of these
inequalities achievable with qubit systems is

pmax,d=2
GYNI ≈ 0.5694 > 1

2
,

pmax,d=2
LGYNI ≈ 0.8194 = pmax,d=2

GYNI + 1

4
> 3

4

(3.21)

3. Interestingly, the maximal value of pGYNI was found to increase for higher dimensional
systems while the maximal value of pLGYNI followed no such increasing trend despite the
striking similarity of the two inequalities.

4. Thus the true value of the “Tsirelson bounds” for these two inequalities still remains an open
question.

Discussion: assumptions behind Inequalities (3.16) and (3.17)
We will now make explicit the assumptions behind the inequalities (3.16) and (3.17). It would be
useful to first review the assumptions behind the CHSH Bell inequality and draw analogies with
these causal inequalities. In the CHSH case [42], one again considers two parties, Alice and Bob
with inputs a, b and outputs x, y respectively. The Bell local polytope in this case is characterised
by all distributions p(x, y∣a, b) that satisfy the local causality condition (3.22) [41] for some set of
hidden variables Λ.

p(x, y∣a, b) = ∫
λ∈Λ

q(λ)p(a∣x,λ)p(b∣y, λ) (3.22)
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where the (hidden) variables λ are arbitrary variables taking value in a space Λ and distributed
according to the probability density q(λ). The CHSH game [42] involves two parties, Alice and
Bob with with classical input bits a, b and outputs x, y all ∈ {0,1} who are non-signalling (i.e., both
Equations (3.11) and (3.12) are satisfied) and choose uniformly random inputs a, b (i.e., p(a, b) =
1/4). The game is won if x⊕y = a.b (where ⊕ represents addition modulo 2). The maximum winning
probability for local-causal strategies i.e., those that produce correlation satisfying Equation (3.22)
is upper bounded as

pCHSH ∶= p(x,x⊕ a.b∣a, b) ≤ 3

4
(3.23)

The above inequality rewritten equivalently in terms of the expectation values of the outcomes
(which we will not consider here) is usually known as the CHSH inequality [42]. Any classical
strategy obeys the Inequality (3.23) as long as no-signalling is satisfied and the inputs are inde-
pendently and randomly chosen. Often, the latter assumption is known as the freedom of choice
assumption. We will not go into further details of these assumptions as this would be a chapter
of its own and refer the reader to [41] for further information. It was found that the maximally
entangled, Bell state, ∣Φ+⟩ = 1√

2
(∣00⟩+ ∣11⟩) with appropriately chosen measurements for Alice and

Bob [42] maximally violate this inequality with a winning probability of ≈ 83% as compared to
the “classical” bound of 75% even when the assumptions are satisfied. This implies that quantum
theory is non-local causal or Bell non-local. Note that if one of the assumptions: non-signalling
or freedom of choice is not satisfied in an experimental realisation of such a game, even classical
strategies can violate the Inequality (3.23) [46].

Coming back to causal inequalities, one notices the analogy between Equations (3.13) and
(3.22) and inequalities (3.16), (3.17) and (3.23). Analogous to the non-signalling assumption in
the CHSH case, there is the “at most 1-way signalling” assumption in the GYNI and LGYNI
cases. If both way signalling was allowed, both inequalities (3.16), (3.17) could be maximally
violated (with a 100% winning probability) even by causally ordered processes by the following
trivial strategy: Alice picks an input bit x and sends it to Bob. At the same time, Bob picks his
input bit y and sends it to Alice. Upon receiving Bob’s input b, Alice outputs x = b and upon
receiving Alice’s input a, Bob outputs y = a. This corresponds to the causal structure shown in
Figure 3.5. Such a strategy is avoided only if it is ensured that in each run of the experiment,
either all of Alice’s operations (i.e., choosing input x and producing output a) are before all of
Bob’s operations (i.e., choosing input y and producing output b) or all of Bob’s operations are
before all of Alice’s operations. Further, the freedom of choice assumption is also required here,
just as in the CHSH case: Alice and Bob must choose their inputs x and y independently of each
other and they must be uniformly random. Again, if this is not satisfied, a trivial strategy can
saturate the logical bound of inequalities (3.16), (3.17) and (3.23): both parties could (prior to
the experiment) agree to always prepare the input a = 0 and b = 0 and produce outputs x = 0 and
y = 0. To summarise, a bipartite process is called non-causal if:

1. the following conditions are both satisfied

(a) at most 1-way signalling: The two labs are perfectly isolated and do not leak any
information between the time that the input system is received in the lab and the output
system is released out of the lab. This guarantees in every round of the experiment that
Alice and Bob can not exchange their local setting choices (i.e., two way signalling) and
produce their local outcomes after this exchange has been completed.

(b) independent inputs: The local settings of both parties are assumed to be independent
of each other and randomly distributed.

2. and the process produced statistics that are not compatible with Equation (3.13).
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Thus, the interesting case is only when the GYNI and LGYNI inequalities are violated even
when the at most 1-way signalling and independent inputs assumptions are satisfied. Only in this
case are the inequalities a device-independent certificate of non-classicality of causal structures and
we can infer that the underlying process is truly non-causal [24].

A B

X Y

Figure 3.5: The causal ordering of inputs and outputs of Alice and Bob that allow them to trivially
violate the GYNI and LGNI causal inequalities. A, B, X and Y (∈ {0,1}) represent the Random
Variables of which the corresponding lower case alphabets are specific instances of.

3.3.2 Multipartite scenarios [23]

In a multipartite scenario with N parties {Ai}Ni=1 with possible setting choices denoted by the vector
a⃗ = (a1, ..., aN) and possible outcomes by the vector x⃗ = (x1, ..., xN), multipartite causal inequalities
(ref) are constraints on the probability distributions p(x⃗∣a⃗) derived from the assumption that
there exists an underlying causal structure defining the order between parties. In general, parties
appearing earlier in the causal structure can control the order of future parties probabilistically,
resulting in a convex combination of correlations compatible with a fixed causal structure. In
the case where one party controls the causal order of a set of parties probabilistically [23], causal
correlations are obtained which decompose into a convex mixture of distributions each compatible
with one DAG (i.e., a fixed causal structure) over N nodes (i.e., parties). This general scenario
is cumbersome to characterise mathematically for N > 2 but takes a much simpler definition
(analogous to the bipartite case of Section 3.3.1) for totally ordered causal structures. In the latter
case, one obtains causally ordered correlations which are special instances of causal correlations [23].

Definition 3.3.1 (Causally ordered correlations [23]). Let the set S = {σi}Ni=1 represent the set
of all permutations of the N numbers 1,2, ...,N . The N ! totally ordered DAGs over N nodes
correspond to the causal orders {Aσi(1) ≺ Aσi(2) ≺ ... ≺ Aσi(N)}Ni=1 of the N parties i.e., if the
parties act by a permutation σ ∈ S, then the party Ai acts before the party Aj if and only if
σ(i) < σ(j). Then, a probability distribution p(x⃗∣a⃗) is compatible with the causal order σ if no
party signals to those before her, namely if for every i the marginal distribution

p(xσ(1), ..., xσ(i)∣a⃗) = ∑
xσ(j),j>i

p(x⃗∣a⃗) (3.24)

does not depend on the inputs aσ(j) with j > i i.e.,

p(xσ(1), ..., xσ(i)∣aσ(1), ..., aσ(i), aσ(i+1), ..., aσ(N))
= p(xσ(1), ..., xσ(i)∣aσ(1), ..., aσ(i), a′σ(i+1), ..., a

′
σ(N))

∀aσ(j), a′σ(j)
(3.25)

A probability distribution that is compatible with at least one causal order σ is said to be causally
ordered according to the order σ. More generally, one can have convex combinations of causally
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ordered distributions
p(x⃗∣a⃗) = ∑

σ∈S
qσpσ(x⃗∣a⃗), qσ ≥ 0, ∑

σ∈S
qσ = 1, (3.26)

where each pσ is compatible with a fixed order σ ∈ S. The set of all correlations p(x⃗∣a⃗) satisfying
Equation (3.26) are simply referred to as causally ordered correlations.

Note that in the bipartite case (Section 3.3.1), the set of causally ordered and causal correlations
coincide since all three possible DAGs over two nodes (Figure 3.6) correspond to total causal orders
between the two parties. This is not true when N > 2 where there exist many other non-trivial
causal structures that are not totally ordered (for example, see Figure 3.7). Note however that
Equation (3.26) is a suffiecient (but not necessary) condition for causal separability (Section 3.4)
in the multipartite case [23]. We refer the reader to [43, 47] for a more precise characterisation of
the causal polytope and corresponding facet inequalities in general multipartite scenarios.

Remark. There exist process matrices that are “causal” i.e., do not violate a causal inequality but
become “non-causal” when they are extended to include some ancilla systems for each party. Hence
processes that remain causal even when arbitrary ancillas are included are termed as “extensible
causal” [43]. Similarly processes that maintain the property of “causal separability” (Section 3.4)
even when ancillas are included are called “extensibly causally separable” [43].

A B

(a)

A B

(b)

A B

(c)

Figure 3.6: Possible DAGs over two nodes: a) one way signalling from A to B b) one way
signalling from B to A. c) no signalling between A and B.

A
B

C

D
E

Figure 3.7: An example of a 5 node DAG.

3.4 Causally separable and causally non-separable processes:
causal witnesses

In the previous section, we talked about causal orders at the level of probability distributions.
Here, we discuss causal orders at the level of process matrices. The former is a device-independent
approach while the latter is device-dependent.
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Bipartite causal separability

Definition 3.4.1 (Bipartite causal separability [23]). A bipartite process matrix W ∈ AI ⊗AO ⊗
BI ⊗BO is causally separable if it can be decomposed as a convex combination of causally ordered
processes:

W sep = qWA≺B + (1 − q)WB≺A, q ∈ [0,1] (3.27)

where WA≺B and WB≺A are valid process matrices compatible with the causal orders A ≺ B and
B ≺ A respectively as defined in Section 3.2.2.

Ignoring the normalisation constraint, the set of causally separable process matrices is a con-
vex cone denotes by Wsep . A process matrix that cannot be decomposed as in Equation (3.27) is
called causally nonseparable.

Special case of tripartite causal separability
The general definition of multipartite causally separable processes with arbitrary dimensions of
the output spaces is highly non-trivial, analogous to the case of causal processes (Section 3.3.2).
As pointed out in [23], this is because one can consider situations in which an agent, through her
local operations, could modify a classical variable that determines the causal order of agents in her
future. In such a “classical switch”, operations would still be causally ordered in each run of an
experiment, but it wouldn’t be possible to write the corresponding process matrix as a mixture of
valid causally ordered process matrices. A detailed analysis and precise definition of multipartite
causal separability can be found in [43]. Here, we define (as given in [23]) a special case of tripartite
causal separability for three parties A, B and C where one of the parties, say C has a trivial output
space. This definition will be useful when we later review the properties of the quantum switch in
Section 4.1.2.

Definition 3.4.2 (Tripartite causal separability (special case) [23]). Consider three parties A, B
and C where C has a trivial output space, i.e., dCO = 1. This means that C cannot signal to the
other parties, and every process of this kind must be compatible with C being last and only two
definite causal orders are relevant in this case: A ≺ B ≺ C and B ≺ A ≺ C. In such a situation,
a tripartite process matrix W ∈ AI ⊗ AO ⊗ BI ⊗ BO ⊗ CI ⊗ CO is causally separable if it can be
decomposed as a convex combination of causally ordered processes:

W sep = qWA≺B≺C + (1 − q)WB≺A≺C , q ∈ [0,1] (3.28)

where WA≺B≺C and WB≺A≺C are valid process matrices compatible with the causal orders A ≺ B
and B ≺ A respectively as defined in Section 3.2.2.

Again, ignoring the normalisation constraint, this defines a convex cone Wsep
3C . Note in general

that all causally separable process are causal processes but the converse is not true. One may
consider causal separability as analogous to separability of non-entangled quantum states (ref) and
causal processes as analogous to Bell local states. The former is a subset of the latter: certain
types of non-distillable entanglement is non-separable but may still be Bell local [48, 49] i.e., not
violate Bell inequalities.

Causal witnesses [23]
Just as in the case of non-separability of entanglement [48,49], causal non-separability can also be
witnessed as shown in (ref). A causal witness is defined as follows.

Definition 3.4.3 (Causal witness [23]). A hermitian operator S is called a causal witness if
tr[SW sep] ≥ 0 for every causally separable process matrix W sep. The bound 0 and the sign of the
inequality are arbitrary, these particular choices are for mathematical convenience.
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Since the set of causally separable processes is closed and convex, for every causally non-
separable process matrix Wns there exists a causal witness SWns such that tr[SWnsWns] < 0. A
complete characterisation of causal witnesses is presented in [23].

In order to have an experimental proof of causal non-separability, we must be able to “measure”
causal witnesses. This is done by first noting that S is a hermitian operator. Let us consider the
bipartite case as done in [23]. The hermitian operator S ∈ AI ⊗AO ⊗BI ⊗BO can be decomposed
as a linear combination of the form

S = ∑
a,b,x,y

γa,b,x,yM
AIAO
x∣a ⊗MBIBO

y∣b (3.29)

where γa,b,x,y are real coefficients and MAIAO
x∣a and MBIBO

y∣b are positive semidefinite matrices that

can always be interpreted as the Choi-Jamio lkowski representation of CP maps (Section 3.1). Note
that this decomposition (3.29) is not unique. We have

tr[SW ] = ∑
a,b,x,y

γa,b,x,ytr [(MAIAO
a∣x ⊗MBIBO

b∣y )W ] (3.30)

According to the generalised Born rule of Equation (3.5), the terms tr [(MAIAO
x∣a ⊗MBIBO

y∣b )W ]
represent the probabilities P (MAIAO

x∣a ,MBIBO
y∣b ) that the maps MAIAO

x∣a and MBIBO
y∣b are realised.

This allows the causal witness (at least in principle2) to be implemented experimentally: one can
compute the quantity tr[SW ] by implementing the maps MAIAO

x∣a and MBIBO
b∣y , estimating the

corresponding probabilities P (MAIAO
x∣a ,MBIBO

b∣y ) and combining them as in Equation (3.30). We

will discuss a particular example of a causal witness in the Section 4.1.2 about the quantum switch.

3.5 Relation to the two-time states formalism [17]

Typically in quantum mechanics, one prepares a system in a fixed initial state, performs certain
operations on it or lets it evolve in time and then measures the final state to record the experimental
statistics. This is called pre-selection. The two-time formalism [14, 31, 32] describes quantum
theory from a perspective where both the initial and final states are fixed. Such a situation could
be imagined through post-selection: where in an experiment, final states not corresponding to the
fixed final state may be discarded and the description of the process on the post-selected ensemble
resembles a process where both initial and final states are fixed.

As a concrete example [17], one can consider a situation where an initial state ∣ψ⟩ is prepared
in a lab at time t1. At some time t between the initial time t1 and a final time t2, an observable
O is measured on the system prepared in the initial state ∣ψ⟩. Let the state ∣φ⟩ be one of the
non-degenerate eigenstates of this observable that can occur with a non-zero probability. The ex-
perimenter can now consider the experiment successful if she observes the eigenvalue corresponding
to the state ∣φ⟩ at time t2, after measuring O, and discard the system if any other eigenvalue is
observed. Thus by repeating the same experiment on an ensemble of particles all prepared in the
same initial state, ∣ψ⟩, the experimenter can obtain a sub-ensemble (post-selected ensemble) of
systems with the initial state ∣ψ⟩ and the final state ∣φ⟩. One could then consider the statistics of
possible intermediate measurements (between times t1 and t2) on the ensemble and this would in
general be different for the post-selected and the entire ensemble.

When performing such a quantum experiment, the experimenter can never tell at intermediate
times whether the result of the experiment would correspond to the desired final state or which

2Of course assuming that these CP maps can be implemented even if the causal order of the parties is not
well-defined. In principle, the causal witness for a process matrix can be implemented as long as the process matrix
itself can be implemented.
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pre- and post-selected ensemble she is working with. She can only know this a-posteriori, at
time t2 after the measurement result has been obtained and the post-selection has been done.
On the other hand, if nature allowed for fundamental post-selection [17] i.e., where initial and
final states of the universe are fixed independently and guaranteed to occur through some natural
mechanism, then the experimenter could tell which pre- or post-selected ensemble she is in at
times t1 < t < t2 and see the corresponding statistics, even before the final state is obtained. This
is in contrast to experimental post-selection described before where there is no guarantee about
which final state will occur, however the quantum mechanical predictions for the experimentally
post-selected sub-ensemble with initial state ∣ψ⟩ and final state ∣φ⟩ are the same as those for the
corresponding fundamentally post-selected ensemble. Thus any two time state [17] (described by
an initial state ∣ψ⟩ at time t1 and final state ∣φ⟩ at time t2) can be prepared in a lab through
experimental post-selection.

The main finding of [17] is that process matrices can be directly mapped to a class of two-time
states [17] which implies that any process matrix (even those that violate causal inequalities) can
be prepared in a lab through experimental post-selection or in other words “the world described
by process matrices is equivalent to a particular case of a quantum world with fundamental post-
selection” [17]. This provides a physical interpretation of process matrices using laboratory quan-
tum mechanics. However the question of whether all process matrices can be implemented in a
lab with pre-selection alone still remains open.
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Chapter 4

Comparing the two frameworks

Having reviewed the causal boxes and process matrix frameworks, we can now give a preliminary
comparison that may be useful for identifying the set of processes that can be described in both
formalisms. As explained in Section 1.3, this identification would be useful for understanding
the properties of physical causal structures and the physical principles governing them. An exact
characterisation of such processes in the intersection of the two frameworks is however, beyond
the scope of this work. We now consider a specific example, namely that of the quantum switch
introduced in Section 1.4, and compare its representation as a causal box against that as a process
matrix.

4.1 A specific example: the quantum switch

A quick recap: the quantum switch a system that performs a quantum-controlled superposition
of the orders of two unitaries1. The action of the switch is summarised in Equation (4.1) below
which is the same as Equation (1.1) and has been reproduced here for convenience. This was
experimentally demonstrated in [21, 22] and has been shown to have a computational advantage
over causally ordered processes [28,29] which makes it a particularly interesting case.

(α ∣0⟩ + β ∣1⟩)C ⊗ ∣Ψ⟩T → α ∣0⟩C ⊗ (UBUA ∣Ψ⟩)T + β ∣1⟩C ⊗ (UAUB ∣Ψ⟩)T . (4.1)

This can be seen as the action of the global unitary V (UA, UB) of the initial state (α ∣0⟩+β ∣1⟩)C ⊗
∣Ψ⟩T [23].

V (UA, UB) = ∣0⟩ ⟨0∣⊗UBUA + ∣1⟩ ⟨1∣⊗UAUB , (4.2)

where the operator before the tensor product ⊗ acts on the control and the operator after the
tensor product acts on the target system. Let us now look at how this system is described within
the causal boxes and process matrix formalisms.

4.1.1 The quantum switch as a causal box [18]

Here we describe the quantum switch as originally done in [18] i.e., in terms of its sequence
representation (Section 2.4.3). In Section 4.1.3, we will rewrite this in the CJ representation
(Section 2.4.1) while comparing it with the process matrix for the quantum switch.

1The notion of superposition of orders can be easily extended from unitary operations to arbitrary CP maps by
allowing parties to operate on ancilla systems. This is because any CP map can be purified to a unitary evolution
by introducing an ancillary system and a projective measurement on some subsystem of the original system and
ancilla.
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Figure 4.1: The quantum switch as a causal box (Figure 15 [18])

As can be seen in Equation (4.1), QS is a system that, given black-box access to two unitaries
UA and UB , applies them in a controlled superposition of different orders. This is illustrated in
Figure 4.1 which is adapted from [18]. Equations (4.1) and (4.2) describe the effect of plugging the
quantum switch into the systems UA and UB which corresponds to the dashed box from Figure 4.1.
However, the quantum switch itself, i.e., the box QS in the figure, cannot be described using combs
or circuits while it is a causal box [18].

Firstly, the set T (here, representing a time parameter) is chosen to be T = {1,2, ...,6} since the
entire system can be executed in 6 steps. In this case, the causality conditions of Definition (2.2.2)
simply require that the output corresponding to an input at t is produced earliest at the next time
step, t+ 1. The boxes UA and UB can be provided with (internal) counters, that keep track of the
number of times that UA or UB is applied. Let ∣ψnt ⟩ ∈ ∨n(Cd⊗ ∣t⟩) be an element of the symmetric
subspace of n qudits all arriving in position t, for n ≥ 1. Then

UA ∣Ω⟩E ⊗ ∣i⟩UA = ∣Ω⟩F ⊗ ∣i⟩UA
UA ∣ψnt ⟩E ⊗ ∣i⟩UA = ∣(U⊗n

A ψn)t+1⟩F ⊗ ∣i + n⟩UA
(4.3)

where the register E contains the input to UA, F contains the output, and the register denoted UA
is the internal counter of the system. The box UB is defined analogously. A complete description
of QS involves knowing how inputs on the entire Fock space of each input wire are mapped to the
output space for all points in T . Many of these inputs are “invalid”, e.g., the control and target
bits are expected to be received at the first step on the wires A and B respectively. Describing
the behaviour of QS only on such “valid” inputs suffices, as one can assume that QS simply does
nothing if invalid inputs are fed in. The system QS is split into 3 operations at times t = 1,3,5 [18]:

1. At t = 1, QS1 moves the control qubit to its internal register and forwards the target state
∣ψ⟩ to either UA or UB conditioned on the value of the control.

QS1 (∣0⟩A ⊗ ∣ψ⟩B) = ∣0⟩QS ⊗ ∣Ω⟩C ⊗ ∣ψ⟩E
QS1 (∣1⟩A ⊗ ∣ψ⟩B) = ∣1⟩QS ⊗ ∣ψ⟩C ⊗ ∣Ω⟩E

(4.4)

2. At t = 3, QS3 forwards the state received from UA to UB and the state received from UB to
UA.

QS3 (∣ψ⟩D ⊗ ∣φ⟩F ) = ∣φ⟩C ⊗ ∣ψ⟩E (4.5)

3. At t = 5, QS5 outputs either the message from UA or from UB along with the control qubit,
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Figure 4.2: Sequence representation of the quantum switch: The description of the quantum
switch as a causal box provided in this section (which is as given in [18]) is in the sequence
representation. Here we illustrate this pictorially. For each wire (including the quantum memory
wire Q) j ∈ {A,B, ...,H,Q}, jt, t ∈ represents the space C2 ⊗ Ω ⊗ ∣t⟩ i.e., at most one qubit sent
in the corresponding wire at the time t. The wires in the sequence representation are labelled by
these spaces. If valid control and target states are sent in wires A1 and B1 respectively, QS1 sends
the control on the quantum memory wire Q2 and the target on E2 (and ∣Ω⟩ on C2) if the control
was ∣0⟩ and on C2 (and ∣Ω⟩ on E2) if the control was ∣1⟩. QS3 merely connects F 3 to C4 and D3

to E4 as shown. QS5 takes in the quantum memory Q5 (unchanged since t = 2), connects D5 to
H6 (discarding F 5) if the memory was ∣0⟩ and F 5 to H6 (discarding D5) if it was ∣1⟩ and forwards
Q5 to G6. If the systems UA and UB , which implement the corresponding unitaries are plugged
between wires E and F and C and D respectively (which act at both t = 2 and t = 4), one obtains
the desired quantum controlled superposition of orders (Section 4.1.1).

conditioned on the value of the control qubit (stored in the internal quantum memory).

QS5 (∣0⟩QS ⊗ ∣ψ⟩D ⊗ ∣Ω⟩F ) = ∣0⟩G ⊗ ∣ψ⟩H
QS5 (∣1⟩QS ⊗ ∣Ω⟩D ⊗ ∣ψ⟩F ) = ∣1⟩G ⊗ ∣ψ⟩H

(4.6)

The main Lemma along with proof from [18] which complete the description of the causal box QS
are reproduced below.

Lemma 4.1.1 ( [18] Lemma 8.1, 2017 IEEE). The composition of QS, UA and UB results in a
system which performs a controlled switch between the orders of UA and UB where the boxes UA
and UB are queried only once each.

Proof. The proof simply consists of putting together all the steps described above. The wires that
do not appear in the equations contain a vacuum state in the corresponding step.

t = 1 (α ∣0⟩A + β ∣1⟩A) ∣ψ⟩B ∣0⟩UA ∣0⟩UB
t = 2 (α ∣0⟩QS ∣Ω⟩C ∣ψ⟩E + β ∣1⟩QS ∣ψ⟩C ∣Ω⟩E) ∣0⟩UA ∣0⟩UB
t = 3 α ∣0⟩QS ∣Ω⟩D ∣UAψ⟩F ∣1⟩UA ∣0⟩UB + β ∣1⟩QS ∣UBψ⟩D ∣Ω⟩F ∣0⟩UA ∣1⟩UB
t = 4 α ∣0⟩QS ∣UAψ⟩C ∣Ω⟩E ∣1⟩UA ∣0⟩UB + β ∣1⟩QS ∣Ω⟩C ∣UBψ⟩E ∣0⟩UA ∣1⟩UB
t = 5 (α ∣0⟩QS ∣UBUAψ⟩D ∣Ω⟩F + β ∣1⟩QS ∣Ω⟩D ∣UAUBψ⟩F ) ∣1⟩UA ∣1⟩UA
t = 6 (α ∣0⟩G ∣UBUAψ⟩H + β ∣1⟩G ∣UAUBψ⟩H) ∣1⟩UA ∣1⟩UB
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Thus, in the final step, the wires G and H contain the desired output, and the counters of UA and
UB are set to 1.

4.1.2 The quantum switch as a process matrix [25]

In the process matrix framework, the quantum switch can be represented as a four party process
matrix [25] between the labs A, B, C and D with the lab C in the global past of all others and lab
D in the global future of all others. Here, C prepares the control and target subsystems in her lab
and does the following: if the control is in state ∣0⟩, C sends only the target subsystem to A, who
sends it to B after operation, who in turn sends it to D after his operation, and if the control is in
state ∣1⟩, he sends the target to B first, the target goes to B first, then to A and finally to D. C
then sends the control subsystem unchanged, directly to D. Note that C lies in the global past of
all parties and cannot be signalled to by any of them while D lies in the global future of all parties
and cannot signal to any of them; thus C has a trivial input space and D has a trivial output
space. Further, C and D send or receive both the control and target qubits, while A and B only
receive, operate on and send out the target qubit. The dimensions of input and output systems of
the local laboratories are therefore dAI = dAO = dBI = dBO = 2, dCI = 1, dCO = 4, dDI = 4, dDO = 1.
Since C prepares both the control and target qubits (labelled as c and t) and sends them out, its
output space can be decomposed as CO = CcO ⊗ CtO (similar to the decomposition of the output
in the common cause example of Section 3.2.3), with dCc

O
= dCt

O
= 2. Similarly, since D receives

both the control and target qubits (labelled as c and t), its input space can be decomposed as
DI =Dc

I ⊗Dt
I , with dDc

I
= dDt

I
= 2.

The situation where A receives an arbitrary target state from CtO through an identity channel,
sends her output to B through an identity channel, who in turn sends his output through an identity

channel to Dt
I is represented by the process vector ∣1⟫CtOAI ∣1⟫AOBI ∣1⟫BODtI with ∣1⟫ = ∑

j=0
∣j⟩ ∣j⟩.

Similarly when A and B exchange roles i.e., C sends the target first to B who later forwards it

to A and finally to D, we have the process vector ∣1⟫CtOBI ∣1⟫BOAI ∣1⟫AODtI . Thus the quantum
switch which describes the controlled superposition of the two cases where the first case occurs
only when the control (sent directly to Dc

I from CcO) is in the ∣0⟩ state and second only when the
control is in the ∣1⟩ state, is represented by the pure process matrix WQS = ∣wQS⟩ ⟨wQS ∣ where

∣wQS⟩ = ∣1⟫C
t
OAI ∣1⟫AOBI ∣1⟫BOD

t
I ∣00⟩C

c
OD

c
I + ∣1⟫C

t
OBI ∣1⟫BOAI ∣1⟫AOD

t
I ∣11⟩C

c
OD

c
I (4.7)

The situation is illustrated in Figure 4.3. In this case, it can be checked that

((α ⟨0∣ + β ⟨1∣)C
c
O ⊗ ⟨ψ∗∣C

t
O ⊗ ⟪U∗

A∣AIAO⟪U∗
B ∣BIBO) ⋅ ∣wQS⟩

=α ∣0⟩D
c
I ⊗ (UBUA ∣ψ⟩)D

t
I + β ∣1⟩D

c
I ⊗ (UAUB ∣ψ⟩)D

t
I ,

(4.8)

where ⟨ψ∗∣ denotes the complex conjugate of ⟨ψ∣ = ∣ψ⟩† in the computational basis {∣0⟩ , ∣1⟩},
such that ⟨ψ∗∣i⟩ = ⟨i∣ψ⟩ , i ∈ {0,1}. Note that for the control state (in Dc

O), ∣φ⟩ = α ∣0⟩ + β ∣1⟩,
⟨φ∣ = ∣φ⟩† = α∗ ⟨0∣ + β∗ ⟨1∣ and ⟨φ∗∣ = α ∣0⟩ + β ∣1⟩.

Equation (4.8) says that given the process vector ∣wQS⟩, if C prepares the control and target
states as (α ∣0⟩+β ∣1⟩) and ∣ψ⟩ respectively, while A and B apply the unitaries UA and UB respec-
tively, D will end up with the desired final state i.e., the state where the order of the unitaries
UA and UB acting on the target are entangled with the state of the control. Of course, A and B
can choose to apply any other, non-unitary quantum operation/perform measurements on parts
of their input system, and the quantum switch would then implement a controlled superposition
of these two operations/measurements.
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Figure 4.3: 4 party process matrix for the quantum switch: A lab C in the past of all others
(with trivial input space) prepares the control and target states and sends the target to A if the
control is in state ∣0⟩ and to B if the state is ∣1⟩. After A and B have operated on the target in
an order depending on the control state, a lab D in the future of all others (with trivial output
space) receives the target from A or B and control directly from D and thereby holds the final
state of the joint system where the order of A’s and B’s operation on the target is entangled with
the control state at the end of the process. The process matrix, W for the quantum switch in this
case represents a superposition of the orders C ≺ A ≺ B ≺D (solid red arrows) and C ≺ B ≺ A ≺D
(dashed blue arrows) for the target system.

Note that the reduced process matrix of the quantum switch over A and B only (obtaining by
tracing out all of C’s and D’s inputs and outputs) is just an equal classical mixture of ordered
process matrices and is hence causally separable.

WAB
QS = trCICODIDO ∣wQS⟩ ⟨wQS ∣

= 1

2
WA≺B + 1

2
WB≺A,

(4.9)

where

WA≺B = 2(1AI ⊗ ∣1⟫⟪1∣AOBI ⊗ 1BO),
WB≺A = 2(1BI ⊗ ∣1⟫⟪1∣BOAI ⊗ 1AO).

Note that all process matrices above are valid process matrices [23] up to normalisation, with
the normalisation condition for process matrices being trW = dO, where dO is the product of the
output dimensions of all the labs involved in W .

The causal non-separability of the process matrix (analogous to the non-separability of quan-
tum states) of the quantum switch, WQS is quite evident from Equation (4.7) (since it is a pure,
entangled vector) and it can be formally proven by constructing a causal witness SQS (Section 3.4)
for WQS and showing that tr[SQSWQS] ≥ 0. An example of such a witness is the Chiribella wit-
ness [23]. This witness is based on the result of Chiribella et. al. [50] which shows that quantum
controlled superpositions of causal orders such as the QS, provide an operational advantage over
classical mixtures of orders in certain information processing tasks. The task considered involves
a set of quantum operations such that any two of them either commute or anti-commute and the
task itself is to tell whether a given pair of operations commute or anti-commute. This result is
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remodelled as a causal witness for the quantum switch in [23] by deriving an upper bound on the
winning probability for causally separable processes (which include classical mixtures of orders)
and showing that the process matrix for the quantum switch exceeds this bound, thereby estab-
lishing its causal non-separability.

Inability to violate causal inequalities [23]
Firstly, note that the specific unitaries UA and UB are not built in to the description of the quantum
switch itself (both in the causal boxes Section 4.1.1 and process matrix Section 4.1.2 frameworks).
The quantum switch implements a process that performs a quantum controlled switching between
any two operations that one may “plug in” to it (Figures 4.1 and 4.3; these could be unitaries, mea-
surements or other general CPTP maps. When one talks about the quantum switch in the context
of causal inequalities (which are formulated in terms of probabilities of measurement outcomes and
settings), the local operations performed by each local lab would be a measurement with a corre-
sponding local setting and outcome, but the process matrix used to calculate the corresponding
distribution (Equation (3.5)) would be that of the quantum switch (WQS , Equation (4.7)).

We see that the quantum switch clearly does not violate any bipartite causal inequalities such
as the GYNI/LGYNI 3.3.1 [24] (Section 3.3.1) for the parties A,B since the reduced process WAB

QS

(Equation (4.9)) is just a classical mixture of fixed orders and hence causally separable. It can
be checked that the reduced process matrix of the quantum switch over any subset of 3 labs is
also causally separable by the same argument. Further, it turns out that despite being causally
non-separable, WQS does not violate any four party causal inequalities involving A,B, C and D.
This is a consequence of the following theorem proved in [23]. We state the theorem here without
proof.

Theorem 4.1.1 ( [23] Theorem 4). Consider N+1 parties {A1, ...,AN ,D} with settings {a1, ..., aN ,D}
and outcomes {x1, ..., xN , z}. If the marginal distribution p(x⃗∣a⃗, d) ∶= ∑

z
p(x⃗, z∣a⃗, d) is such that

1. p(x⃗∣a⃗, d) = p(x⃗∣a⃗) i.e, it does not depend on d: D does not signal to any other (group of)
parties;

2. p(x⃗∣a⃗) = ∑
σ
qσpσ(x⃗∣a⃗), where qσ ≥ 0,∑

σ
qσ = 1, and the probability distributions pσ are causally

ordered,

then the full (N + 1)-partite probability distribution p(x⃗, z∣a⃗, d) is causal i.e., cannot violate any
causal inequalities.

Note that WQS always produces statistics compatible with this theorem for N = 2 and N = 3:
firstly, D does not signal to A or B since dDO = 1, and secondly, any reduced bipartite or tripartite
process matrix obtained from WQS is causally separable (an example is given in Equation (4.9))
and can only produce causal correlations that satisfy the second condition of the above theorem.
Hence the quantum switch cannot violate any tripartite causal inequalities.

The quantum switch is thus an example of a causally non-separable process that does not violate
any causal inequalities i.e., an example of indefinite causal order that can be “witnessed” in a device
dependent way but not in a device independent way. This is analogous to the fact that there exist
certain entangled states which are non-separable by virtue of being entangled but do not violate
Bell inequalities (see [41] and the references therein). All causally non-separable processes known
to be physically implementable belong to this category [23]; the interesting question of whether
causally non-separable processes that violate causal inequalities can be physically implemented
still remains open.

Remark. Note that the process “vector” for the quantum switch described in [23] is slightly dif-
ferent from the one we describe here (which is also the one used in [25]). In [23], the quantum
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switch is modelled as a tripartite process without a party C in the global past of all others who
prepares the control and target states. Instead, the control and target states are hardcoded in the
process matrix itself. The four party process vector (Equation (4.7)) used here seems more appro-
priate because both in the physical implementation and in the causal box description, the control
and target can be freely prepared and are not pre-determined by an environment that is outside the
experimenter’s control. Note that both are equivalent descriptions and that all the results (such
as causal non-separability and inability to violate causal inequalities) of [23] also apply to the four
party quantum switch considered here [25].

4.1.3 Comparing the two descriptions of QS

Having reviewed the quantum switch in both frameworks, we can now compare them. Here we
relate the causal box and process matrix representations of the quantum switch and show that the
latter is obtained from the former once vacuum states and time stamps are ignored.

The systems UA and UB in the causal box description are analogous to the parties A and B
in the process matrix description. Further, in order to establish this “equivalence”, one needs to
rewrite the causal box description of the quantum switch reviewed in Section 4.1.1 in terms of its
CJ representation.

The causal box description of the quantum switch [18] (Section 4.1.1) is in terms of the se-
quence representation for QS which is illustrated in Figure 4.2. Since T = {1,2, ...,6}, representing
time is a totally ordered set, the sets T ≤t = {p ∈ T ∣p ≤ t} are equivalent to cuts in this case. The
sequence of cuts CN ⊆ ... ⊆ Ci ⊆ ...C1 = C chosen here are C1 = T ≤6,C2 = T ≤5, ...,C6 = T ≤1. Hence the
sets Ti ∶= Ci/Ci+1 are defined by the single points Ti = (7 − i), i ∈ {1,2, ...,6}. Further, the causality
function is χ(ti) = ti−1 i.e., χ(C) = Ci+1. We then have Ti+1 ∩ Ti = ∅, as per the requirement of
Definition (2.4.1). Each wire in the sequence representation of Figure 2.6 now carries at most a
single message and we can restrict the state space of each wire to the qubit Hilbert space with
position information with the vacuum state (no message) included; for each wire j ∈ {A,B, ...,H,},
jt, t ∈ represents the space C2 ⊗Ω⊗ ∣t⟩ i.e., qubits sent at the particular time t.

Note that, in the process matrix formalism, each party acts upon a system only once i.e., the
target qubit passes through A’s and B’s lab not more than once each. However, in the casual
box description (Figure 4.2), the analogous systems UA and UB “act” at two times, (t = 2 and
t = 4). Since one of these operations is on the vacuum state, by definition of QS, both UA and
UB act on a non-trivial state only once. Since we are dealing with finite dimensional Hilbert
spaces, we can simply use the regular CJ representation in terms of the CJ operator instead of
the sesquilinear form (Section 2.4.1). From Figure 4.2, QS can be seen as a map QSI→O from
HI ∶= A1⊗B1⊗D3⊗F 3⊗D5⊗F 5 to HO ∶= C2⊗E2⊗C4⊗E4⊗G6⊗H6 and thus its corresponding
CJ operator is such that ΦQS ∈ L(HI) ⊗ L(HO). Further, it turns out that the CJ operator
in this case is a rank 1 projector i.e., it can be written as ΦQS = ∣φQS⟩ ⟨φQS ∣ for a pure state
∣φQS⟩ ∈HI ⊗HO. We thus have

∣φQS⟩ = (II ⊗QSI→O) ∑
i,...,n∈{0,1}

∣ijklmn⟩I ∣ijklmn⟩I

= ∑
i,...,n∈{Ω,0,1}

∣ijklmn⟩I (QSI→O ∣ijklmn⟩I) ,
(4.10)

where (Equation (4.10)) we follow the notation ∣ijklmn⟩I ≡ ∣i⟩A
1

⊗∣j⟩B
1

⊗∣k⟩D
3

⊗∣l⟩F
3

⊗∣m⟩D
5

⊗∣n⟩F
5

and ∣ijklmn⟩O ≡ ∣i⟩C
2

⊗ ∣j⟩E
2

⊗ ∣k⟩C
4

⊗ ∣l⟩E
4

⊗ ∣m⟩G
6

⊗ ∣n⟩H
6

. Note that since each set Ti contains
the single element (7− i), i ∈ T , we can make the notation more compact by not including the time
stamp in the state of the system i.e., within the state ket vector, since there is only one possible
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time at which a message can be sent on each wire in Figure 4.2, which is already given by the label
of the wire.

To achieve quantum switching between UA and UB , the system UB should be plugged externally
between the wires C and D and UA between wires E and F , and these connections remain for all
times T . Hence the wires labelled C2 and C4 in Figure 4.2 are connected to the wires D3 and
D5 respectively and E2 and E4 are connected to F 3 and F 5 respectively. We need not consider
cases where the systems UA or UB are connected between different combinations of wires since
this is not part of the description of the quantum switch presented in Section 4.1.1 [18]. Further,
all wires in Figure 4.2 can carry a single qubit or no qubit (∣Ω⟩). However, note that if a vacuum
state is sent on the wire A1, QS will ignore it as this is not a valid input (Section 4.1.1). Hence
it is enough to consider the case where a single qubit state is sent on A1 and we can restrict the
basis elements of A1 to the set {0,1} by excluding the vacuum Ω. From Figure 4.2, we have

QSI→O = (QS1 ⊗ ID3F 3D5F 5)(QS3 ⊗ IA1B1D5F 5)(QS5 ⊗ IA1B1D3F 3),

Now, wires C and D and wires E and F are at all times, externally connected through some
operation and any operation on the vacuum state ∣Ω⟩ leaves it unchanged. Noting this, and using
Equations (4.4), (4.5) and (4.6), we have

∣φQS⟩ = ∑
j,...,n{Ω,0,1}

∣0⟩A
1

∣j⟩B
1

∣k⟩D
3

∣l⟩F
3

∣m⟩D
5

∣n⟩F
5

(QSI→O ∣0⟩A
1

∣j⟩B
1

∣k⟩D
3

∣l⟩F
3

∣m⟩D
5

∣n⟩F
5

)

+ ∣1⟩A
1

∣j⟩B
1

∣k⟩D
3

∣l⟩F
3

∣m⟩D
5

∣n⟩F
5

(QSI→O ∣1⟩A
1

∣j⟩B
1

∣k⟩D
3

∣l⟩F
3

∣m⟩D
5

∣n⟩F
5

)

= ∑
j,...,n{Ω,0,1}

[ ∣0⟩A
1

∣j⟩B
1

∣k⟩D
3

∣l⟩F
3

∣m⟩D
5

∣Ω⟩F
5

∣Ω⟩C
2

∣j⟩E
2

∣l⟩C
4

∣k⟩E
4

∣0⟩G
6

∣m⟩H
6

+ ∣1⟩A
1

∣j⟩B
1

∣k⟩D
3

∣l⟩F
3

∣Ω⟩D
5

∣n⟩F
5

∣j⟩C
2

∣Ω⟩E
2

∣l⟩C
4

∣k⟩E
4

∣1⟩G
6

∣n⟩H
6

].
(4.11)

Note that in the last step, we have ∣Ω⟩ in the wire F 5 whenever we have ∣0⟩ in the wire A1. This
is because when the control is ∣0⟩, QS1 sends ∣Ω⟩ to the wire C2, which remains the unchanged
while passing between C2 and D32 and gets directed into the wire E4 by QS3, again remaining
unchanged by any operation between E4 and F 5. Similarly, we also have ∣Ω⟩ in the wire D5

whenever we have ∣1⟩ in the wire A1.
Now, following the notation ∣1⟫ = ∑

j
∣j⟩ ∣j⟩ used in the process matrix formalism [23] (Sec-

tion 3.2.1), we have

∣φQS⟩ =∣1⟫B
1E2

∣1⟫D
3E4

∣1⟫F
3C4

∣1⟫D
5H6

∣ΩΩ⟩C
2F 5

∣00⟩A
1G6

+∣1⟫B
1C2

∣1⟫F
3C4

∣1⟫D
3E4

∣1⟫F
5H6

∣ΩΩ⟩E
2D5

∣11⟩A
1G6

.
(4.12)

We can now relabel systems as per Equation (4.13) which corresponds to ignoring the time stamps.
One can see that the CJ vector ∣φQS⟩ (Equation (4.12)) of the causal box for QS is identical to the
process vector ∣wQS⟩ (Equation (4.7)) for the quantum switch if the channels that track vacuum

2This is because the vacuum state, ∣Ω⟩ by definition, remains unchanged under any operation i.e., if “nothing”
goes into a system, “nothing comes out!
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states (marked in red in Equation (4.12)) are also ignored.

B1 → CtO,

E2,E4 → AI ,

F 3, F 5 → AO,

C2,C4 → BI ,

D3,D5 → BO,

H6 →Dt
I ,

A1 → CcO,

G6 →Dc
I

(4.13)

Now, we define ∣U∗
A⟫ = I ⊗ U∗

A∣1⟫ and ∣U∗
B⟫ = I ⊗ U∗

B ∣1⟫ as in the process matrix framework
(Section 3.2.1). Since each unitary acts at two distinct times (though only once on a non-vacuum

state), we use the notation ∣U∗
A⟫EF ≡ ∣U∗

A⟫E
2F 3 ∣U∗⟫E4F 5

and ∣U∗
B⟫CD ≡ ∣U∗

B⟫C2D3 ∣U∗
B⟫C4D5

. With
this, one can easily check that Equation (4.14) holds for ∣φQS⟩, analogous to Equation (4.8) for
the process vector ∣wQS⟩.

( (α ⟨0∣ + β ⟨1∣)A
1

⊗ ⟨ψ∗∣B
1

⊗ ⟪U∗
A∣EF⟪U∗

B ∣CD) ⋅ ∣φQS⟩

=α ∣0⟩G
6

⊗ (UBUA ∣ψ⟩)H
6

+ β ∣1⟩G
6

⊗ (UAUB ∣ψ⟩)H
6

,

(4.14)

where ⟨ψ∗∣ denotes the complex conjugate of ⟨ψ∣ = ∣ψ⟩† in the computational basis {∣0⟩ , ∣1⟩}, such
that ⟨ψ∗∣i⟩ = ⟨i∣ψ⟩ , i ∈ {0,1}.

The quantum switch is an example involving superpositions of orders3 that can be described
using both causal boxes and process matrices. Note that in our analysis of the quantum switch,
the sets Ti in the sequence representation contain single elements. Comparing the sequence repre-
sentation of a general causal box Φ (Figures 2.6) and that of the quantum switch, QS (Figure 4.2),
we see that each wire in the sequence representation of Figure 4.2 carries a message at a single,
fixed time t ∈ {1, ...,6} and not over a range of times as in the former case. This allowed us to drop
the time label and represent a message ∣v, t⟩ passing through a wire it, i ∈ {A,B,C,D,E,F,G,Q}
simply as ∣v⟩ passing through it since the time information related to the message is already given
in the time label of the wire. Thus, we could combine multiple wires with the same system label
and different time labels into a single wire by dropping the time labels as done in Equation (4.13)
and directly map the causal box representation of the quantum switch, ∣φQS⟩ (Equation (4.12)) to
its process matrix representation ∣wQS⟩ (Equation (4.7)) (ignoring the vacuum states). However,
a general mapping from causal boxes to process matrices (or vice versa) is still lacking. This is
because the causal boxes framework explicitly keeps track of the (space-)time stamps in the states
which need not always drop out of the state vector as in this special case. Further, since we need
to ignore the space-time labels in going from the causal box to process matrix representations, the
inverse of this map is not well defined.

4.1.4 Discussion: the two representations of QS are very different!

The above mapping of the causal box representation of the quantum switch to its process matrix
representation provides some interesting and useful insights and illustrates why the quantum switch
(as currently implemented [21, 22]) cannot be considered a superposition of causal orders. We
discuss these below.

3It is often claimed to be a superposition of causal orders in existing literature, but we argue in the following
discussion that it is rather a superposition of temporal orders of fixed operations.
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Time information Firstly, this example shows us that the process matrix formalism ignores
crucial time information that allows the quantum switch to be embedded within a fixed space-
time. From the causal box description, it is clear that the target state enters UA and UB at
distinct times depending on whether the control is ∣0⟩ or ∣1⟩. For example, if the control is in the
∣0⟩ state, UA is applied to the target at time t = 2 and UB at time t = 4 while if the control is in
state ∣1⟩, then UB is applied at time t = 2 and UA at time t = 4.

Vacuum states The process matrix description does not consider vacuum states that are crucial
to the physical implementation of the switch. The controlled superposition of two black-box
unitaries is achieved under the assumption that there exists a state ∣Ω⟩ which is invariant under
the action of all operations and the action of the unitaries on this state does not count as a query
to the black-box. This can be thought of as “if nothing is sent into the box, nothing comes out
and the box was not queried”. The switching operation then relies on the fact that it is possible
to have superpositions of sending “something” and “nothing” to an agent/box. In the quantum
switch, whenever the target is sent to one of UA or UB , the vacuum state is sent to the other box.
The existence of such a vacuum state is an important consideration because in the absence of such
states that are invariant under all operations, it is known that the control of unknown (black-box)
unitaries is impossible [36,37]. However, the task becomes possible once vacuum states are allowed
and due to this, it has been possible to physically implement it [35].

Physical assumptions Further, the process matrix framework describes the quantum switch
as a process where the operations to be superposed are applied within independent isolated labs.
Performing these operations are modelled as space-time events with an inaccessible “outside envi-
ronment” around them i.e., neither of the labs can control what happens to the target state after
the first operation and before the second. Within this paradigm, it is claimed that the correspond-
ing process is an example of indefinite causal order. However, in the physical implementation of the
quantum switch (Figure 1.3, [21,22]) and the causal box description, both unitaries are performed
within the same lab4 where the experimenter has full control over the whole experiment.

Not a superposition of causal orders Thus, what is achieved is a (controlled) superposition
of temporal order of the fixed operations UA and UB rather than a superposition of causal order :
the operations are fixed, there is no notion of one operation being a cause of another and the whole
experiment is embedded in a locally flat space-time. The experiments of [21,22] have a well defined
causal explanation in terms of what operations are being performed at each instant of time and
they are compatible with a fixed causal ordering of events. This is better understood in the causal
boxes framework, where the sequence representation of the quantum switch (Section 4.1.1, [18])
provides such a causal explanation i.e., as sequences of operations happening within ordered points
in time/space-time.

The quantum switch and its gravitational twin We have argued that the process matrix
description of the quantum switch with separate local labs and no-predefined global order connect-
ing them does not exactly capture what is happening in the physical implementation of quantum
switch. However, such a treatment is truly interesting and useful in the case of experiments involv-
ing superpositions of gravitating masses [19] where the space-time geometry itself is indefinite and
hence, there really is no fixed global order. The gravitational quantum switch of [19] is a thought-
experiment where the causal orders A ≺ B and B ≺ A (realised in superposition) correspond to
two macroscopically distinguishable configurations of a gravitating mass, which results in distinct

4In the causal box framework, there is no partition into separate labs, so one can always consider the whole
causal box including QS, UA and UB or Figure 4.1 to be in the same lab and under the control of a single agent.
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space-time geomerties and hence causal orders. This is discussed in more detail in Section 4.2.2.
But an interesting point to note here is that the process matrix of the quantum switch discussed so
far and that of the gravitational quantum switch of Section 4.2.2 are the same and specified using
Equation 4.7 even though the two correspond to very different physical situations: the former has
been physically implemented while the latter is just an interesting thought-experiment with no
known implementations. On the other hand, the causal box framework can model the former as
seen in Section 4.1.1 but it cannot model the gravitational quantum switch which corresponds to a
superposition of space-tme geometries/metric because it assumes a fixed global order which defines
a fixed space-time metric. The difference is in the time information. In the quantum switch, the
target system enters the A and B labs/boxes at two distinct times depending on the control but
in the gravitational version, for either value of the control system, the target enters the labs/boxes
at the same proper-time. Thus, in the latter case, Alice and Bob in their local labs cannot dis-
tinguish between the two “branches” of the superposition by measuring the time (in their own
reference frame) at which they receive the target system but in the quantum switch, they could5.
Experiments such as the gravitational quantum switch have not been realised till date. Whether
such experiments would become possible with future technology is a fascinating open question.

4.2 A general comparison of the frameworks

In the previous section, we compared the quantum switch in the process matrix and causal box
frameworks mathematically and also analysed the physical assumptions underlying its description
in both frameworks. In this section, we provide a more detailed and general comparison of the two
frameworks which is summarised below in Table 4.1.

5This also raises the question of whether the quantum switch within the process matrix paradigm would be
implementable coherently since the agents in the separate labs performing UA and UB could always tell which order
they are in by measuring the time at which they receive the target system. For example, if Alice receives nothing
(vacuum state) at t = 2, then she knows that Bob is before her. This is also an example of a cause where sending
nothing also conveys some information!
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CB [18] PM [16]

Global order 3 7

stronger/weaker non-signalling stronger stronger

Examples
Classical, quantum circuits 3 3

Quantum switch 3 3
PR box 3 7

“Non-causal” systems 7 3

Applications
relativistic quantum ryptography 3 [1] ?

Causal modelling, causal discovery ? 3(some) [10,12]6

Superpositions of space-time geometry 7 3 [25]
Quantum complexity ? ?

Table 4.1: A comparison of the causal box (CB) and process matrix (PM) frameworks:
3 indicates that an example or application can be modelled within the corresponding framework
and 7 indicates that it can not. ? represents an open question or something that is yet to be tried.

4.2.1 Global and local notions of order, causal inequalities

The process matrix framework only assumes local quantum mechanics (which may be ordered
with respect to the time shown by an agent’s clock) to be valid in the laboratories of various
agents but makes no assumption about any global order between different agents i.e., it does not
assume a background “space-time structure”. The only condition on process matrices is that they
give valid (non-negative and normalised) probabilities for the various operations performed by the
agents, which forbids global as well as local causal loops [16]. However, one can have valid process
matrices that have no causal description [24] and are not compatible with a fixed background
ordering. These are process matrices that violate causal inequalities [24]. In the causal boxes
framework on the other hand, although messages can be dynamically ordered, allowing parties to
influence the causal order of parties in their future, a global notion of order is still hardcoded in
the framework through the partially ordered set T . Thus process matrices have a local notion of
order but not a global one while causal boxes have both, the set T orders all inputs and outputs
of a causal box. The existence of a sequence representation for every causal box [18] implies that
every causal box can be equivalently described by operations it performs within disjoint subsets

6The quantum causal model [10] and the (first) causal discovery algorithm [12] are based on the process matrix
framework. Although the framework itself is very general and can model several types of physical and possibly
unphysical causal structures, the quantum causal model and causal discovery algorithm presented in these works
can only handle definite causal structures. The causal discovery algorithm can not be used even for the physical
indefinite causal structures such as the quantum switch. To the best of our knowledge, no known causal model
incorporates superpositions of causal orders and no causal discovery algorithm exists for discovering indefinite
causal structures.
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of T (e.g., how it behaves within each disjoint time slice) which provides a causal explanation for
the underlying process. Note that as discussed in Section 3.3.1, the GYNI and LGYNI causal
inequalities can be trivially violated by causal boxes if they are allowed to have space-time stamps
compatible with the causal structure of Figure 3.5 i.e., if the parties simply forward their input
to the other before the other party produces their output. But one of the implicit assumptions
of causal inequalities (discussed in Section 3.3.1) is that in each run of the experiment, either all
of Alice’s operations must be before all of Bob’s or vice versa, in which case causal boxes are not
known to violate such inequalities.

4.2.2 Quantum theory applied to gravitating bodies

Indefinite causal structures can arise naturally in thought experiments where one applies the princi-
ples of quantum theory to gravitating objects. For example, having a large mass in a superposition
of different locations would (according to general relativity) produce a superposition of space-time
geometries and consequently, can result in a superposition of causal ordering between events [19].

Such superpositions of the very structure of space-time have been described in [19], where they
propose a gravitational implementation of the quantum switch [20] i.e., the gravitational quantum
switch. The idea behind the gravitational quantum switch is the following:
Consider two local labs A and B (in the absence of a gravitational field) that are initially non-
signalling. Now, if a heavy mass, such as a planet is placed close to the local lab A, its gravitational
field would cause gravitational time dilation of A’s clock which would alter the causal structure
between A and B and allow her to signal to B. Likewise, placing the mass instead, next to B
would allow B to signal to A. If (hypothetically) the large mass could placed either close to lab
A or close to lab B depending coherently on the value of a control quantum state, then one can
achieve a controlled superposition of space-time geometry and thereby a controlled superposition
of the order of A’s and B’s operations. This is illustrated in Figure 4.4 which is taken7 from [19].

Although the gravitational quantum switch appears to be very similar to the quantum switch
of Section 4.1.1 [23,25], there is a major point of difference.

The physical implementation of the quantum switch [21, 22] corresponds to a situation where
the target state would enter a local lab (or the particular box performing the unitary) a two distinct
times depending on the value of the control: if the control is ∣0⟩, the target enters lab A at time
t0 and lab B at a strictly later time, t1 and if the control is ∣1⟩, the target enters lab B at time
t0 and lab A at the strictly later time, t1. While at the same time, the vacuum state ∣Ω⟩ can be
thought of as passing through lab B at t0 and lab A at t1 in the first case, and through A at t0
and B at t1 in the second case [18].In this case, there is a fixed background space-time structure
and the labs and the target state enters each lab at strictly distrinct times depending on the value
of the control. Note that such a process has a clear causal explanation i.e., a description of events
happening within each interval of time. In fact this is exactly what the sequence representation of
the quantum switch (Section 4.1.1) in the causal box framework provides.

In the case of the gravitational switch, however, there is no longer a fixed background space-
time structure and local agents measure time with respect to the proper time of their local clocks.
In this case, it is shown in [19] that from the perspective of each local agent, the target state
enters each lab only at one time t0 irrespective of the value of the control state and yet, the
final state is a controlled superposition of the order of their operations! Such a process can not
have a causal explanation from the point of view of the local agents i.e., they can not explain the
process happening at each time slice. A distant enough observer, O on whom the gravitational
field has negligible effect can describe the events in terms of her co-ordinate time which would
be unaffected by the superpositions of the gravitational fields at distant points. O’s observations
would be compatible with a fixed space-time structure as she would not detect the gravitational

7Reproduced here, courtesy of the authors.
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Figure 4.4: The gravitational quantum switch (Figure 1 [19]): The gravitational switch is
based on the idea that causal relations can be altered by preparing different configurations of a
gravitating mass. The clocks a and b are assumed to be initially synchronised and are positioned
at fixed distances from a far-away agent O whose time coordinate is t. Events A and B correspond
to the clocks at a and b showing the proper time τ . In this figure, the event A corresponds to clock
a showing proper time ta = τ = 3units and event B corresponds to clock b showing proper time
tb = τ = 3units. Note however that the unit of time measured by each clock would be different
due to gravitational time dilation. In the configuration KA≺B , (left) a mass is placed closer to
clock b than to a. In this case, gravitational time dilation can cause the event A to end up in the
causal past of event B i.e., if long enough proper time has elapsed in each lab, the time difference
between the clocks can become larger than the time taken by light to travel between them. The
configuration KB≺A (right) is fully analogous to KA≺B with the mass placed closer to clock a, in
which case the event B ends up in the causal past of the event A.

fluctuations produced at the distant points, and she would observe the target subsystem entering
each lab A, B at distinct times and therefore have a causal explanation of the event from her
perspective (which would be same as that of the usual quantum switch).

In [19], the example of the gravitational quantum switch is used in a proposal for a Bell’s
theorem for temporal order which is a device-independent but (quantum) theory dependent method
for classifying indefinite and definite causal structures. Note that causal inequalities [24] provide
a device independent and theory independent way, while causal witnesses [23] provide a device
dependent and theory dependent method for doing the same. It is shown [19] that the gravitational
quantum switch violates the Bell’s theorem for temporal order but not any causal inequality, while
the usual quantum switch does not violate causal inequalities [23] or the Bell’s theorem for temporal
order [19], but it is causally non-separable [23]. Note that one cannot model such superpositions
of space-time structure within the causal boxes framework because it assumes a fixed background
space-time structure, T over which all operations are defined.

4.2.3 Quantum and non-signalling processes

Causal boxes can model quantum as well as more general (i.e., “post-quantum”) non-signalling
systems such as the PR box [51], while process matrices assume that agents perform local quantum
operations in their lab, and therefore cannot model a PR box. To be more precise, consider two
agents, Alice and Bob with classical inputs a and b and classical outputs x and y respectively and
let us take the set T for the corresponding causal box to be Minkowski space-time. Since the inputs
and outputs are classical, the causal box in this case is simply described by the set of classical
probability distributions {P CXY ∣AB}. This situation is illustrated in Figure 4.5 in both frameworks.
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We now impose space-like separation between the agents so that the no-signalling conditions (i.e.,

PX ∣AB(x∣ab) = PX ∣AB(x∣ab′) for the marginal PX ∣AB(x∣ab(′)) = ∑
y
PXY ∣AB(xy∣ab(′)) and similarly

for the marginal PY ∣AB(y∣a(′)b) = ∑
x
PXY ∣AB(xy∣a(′)b)) hold. This means that Alice’s output cannot

depend on Bob’s input and vice-versa which imposes a condition on the space-time stamps of the
inputs and outputs a, b, x and y of the causal box (Figure 4.6). In such a situation, the PR box
correlation PXY ∣AB(x, y⊕a.b∣a, b) = 1 is also a valid causal box, even though it is not known whether
a system that produces such correlations between space-like separated parties can ever be physically
implemented8. However a bipartite process matrix where the parties are non-signalling can only be

of the form WAB = ρAIBI⊗1AOBO or can be written as W̃ABC = ∣1⟫⟪1∣C1
OAI⊗ ∣1⟫⟪1∣C2

OBI⊗1AOBO
by including an additional party in the common past of Alice and Bob who prepares their shared
state (see the common cause example of Section 3.2.3). For these process matrices, no operations
performed by Alice and Bob in their local labs A and B can violate the Tsirelson’s bound [45]
and therefore cannot produce the PR box correlations. Note however that if non-signalling is not
imposed, these correlations can be trivially generated (even in the process matrix framework) if
each party simply forwards their input to the other party before the other party produces their
output. Thus, non-signalling process matrices cannot violate corresponding Tsirelson’s bounds9.
This situation for process matrices violating Tsirelson’s bounds appears to be analogous to how
causal boxes fare with violating causal bounds (i.e., causal inequalities), and it would be interesting
to investigate this further to understand how “post-quantumness” in the context of Bell inequalities
(i.e., principles governing non-signalling systems that violate Tsirelson’s bounds) compares with
“post-quantumness” in the context of causal inequalities (i.e., principles governing “non-causal”
systems that violate causal inequalities).

4.2.4 Causality vs non-signalling

Reference [53] points out that the usual non-signalling constraints (Equation (4.15)) in the multi-
party setting are stronger than the constraints arising from relativistic causality alone i.e., the
former are sufficient but not necessary conditions for the latter. Starting with a condition for
“no causal loops”, they argue that only a subset of the stronger non-signalling conditions (4.15)
are necessary and sufficient conditions for relativistic causality. Let us call this subset the weak
non-signalling constraints. The usual, stronger non-signalling constraints used in multipartite Bell
scenarios are given in Equation (4.15) [53]. These are the constrains for an n party scenario with
inputs given by the vector (x1, ..., xn) and outputs by (a1, ..., an).

∑
xj

PX1,...,Xn∣A1,...,An(x1, ..., xj , ..., xn∣a1, ..., aj , ..., an)

=∑
xj

PX1,...,Xn∣A1,...,An(x1, ..., xj , ..., xn∣a1, ..., a
′
j , ..., an)

∀j ∈ [n],{x1, ..., xn}/xj ,{a1, ..., aj , a
′
j , ..., an}

(4.15)

In words, the above constraints state that the outcome distribution of any subset of parties is
independent of the inputs of the complementary set of parties. In the bipartite case (Figure 4.6),

8In this scenario, PXY ∣AB(x, y ⊕ a.b∣a, b) ≤ 3
4

is a Bell inequality i.e., a system that violates it is certified to be
quantum. While the logical bound for this inequality is 1 (which is saturated by the PR box [51]), Tsirelson [45]
showed that the quantum bound i.e, the maximum value of PXY ∣AB(x, y ⊕ a.b∣a, b) that can be obtained in such a

space-like separated experiment (Figures 4.5, 4.6) is close to 0.83 > 3
4

. Systems that violate this quantum bound are
often called post-quantum, non-signalling systems and the PR box is a system that maximally violates this bound.
It is not known whether such post-quantum systems are physical.)

9Although this is true, it should in principle be possible to extend the process matrix framework to include more
general local operations that are compatible with generalised probability theories (GPT e.g., [52]) of which quantum
theory is a subset.
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ρ
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Figure 4.5: Bipartite process with classical inputs x ∈ X, y ∈ Y and outputs: a ∈ A,
b ∈ B (a) as a causal box. SX , SY , SA and SB are the corresponding space-time stamps of these
messages. (b) as a process matrix. Here Alice can receive a quantum system ∈ AI from the outside
environment, measure a part of it based on her local setting choice a, produce a corresponding
classical output x in her lab and send out a remaining, transformed quantum system ∈ AO back
into the environment. Similarly, Bob can function identically with his input quantum system ∈ BI ,
local setting b, local outcome x and output quantum system ∈ BO. If Alice’s local map (red box)
is denoted as MAIAO

x∣a and Bob’s local map (blue box) is denoted as MBIBO
y∣b , then one can then

calculate the corresponding probabilities PXY ∣AB(xy∣ab) using the generalised Born rule (3.5).

these turn out to be necessary and sufficient for relativistic causality i.e., any bipartite correlations
generated by space-like separated parties (Figure 4.6) must satisfy Equation (4.15). However, these
constraints turn out to be only sufficient for more number of parties i.e., when there are three (or
more) space-like separated parties (Figure 4.7), there can exist correlations that do not satisfy
Equation (4.15) which still do not contradict relativistic causality. A weaker set of non-signalling
conditions which are both necessary and sufficient conditions for relativistic causality are derived
in [53].

An example [53] of the weaker condition in the tripartite case would be illustrative to show
which one of the strong non-signalling constraints could be dropped in this case without violating
relativistic causality between three space-like separated agents. Consider a tripartite Bell scenario
with the parties Alice, Bob and Charlie with classical inputs a ∈ A, b ∈ B, c ∈ C and classical
outputs x ∈ X, y ∈ Y , z ∈ Z respectively, as shown in Figure 4.7. As seen in the Figure, the three
parties are space-like separated on a line with Bob in the centre, such that his future light cone
contains the intersection of the future light cones of Alice and Charlie. In this setting, the weak
non-signalling conditions [53] allow for the joint distribution of outcomes of Alice and Charlie, PXZ
to depend on Bob’s input, B as long as the marginal distributions PX of Alice and PZ of Charlie
do not depend on the inputs of complementary sets of parties i.e., PX does not depend on Bob’s
or Charlie’s inputs B, C and PZ does not depend on Bob’s or Alice’s inputs B, A. This means
that all dependence on Bob’s input must be stored in the correlations between Alice and Charlie
and not in their local distributions. These conditions are perfectly compatible with relativistic
causality. The intuition behind this is that the joint distribution PXZ and hence the correlations
can be accessed by Alice and Charlie only in their joint future which is completely contained in
the future of Bob (Figure 4.7). By the time Alice and Charlie can verify the dependence on Bob’s
input on their joint distribution, they are already in the causal future of Bob’s input and there
is no superluminal signalling. Thus requiring that the joint distribution of Alice and Charlie also
does not depend on Bob’s input (as in the strong non-signalling condition) is stronger than what
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SA SB

SX SY

Figure 4.6: Spacetime diagram for bipartite no-signalling: Here, time is along the vertical
and space along the horizontal and all lines represent light like curves (speed of light, c = 1). To
impose no-signalling between Alice and Bob, one can space-like separate them as shown here for
the bipartite scenario of Figure (4.5). It is important that the spacetime location SX at which
the output X is produced does not lie in the causal future of the location SB of the input B and
similarly that SY does not lie in the causal future of SA.

t⃗

x⃗

t

t + 1

xA xB xC

SA

SX

SB

SY

SC

SZ

SXZ

Figure 4.7: Spacetime diagram for a tripartite Bell scenario: Three parties Alice, Bob and
Charlie are located at the spatial locations xA, xB and xC respectively with Bob in between Alice
and Charlie. They generate their inputs A, B, C at time t and produce the corresponding outputs
X, Y , Z at time t+1, while remaining at their respective spatial locations. Si, i ∈ {A,B,C,X,Y,Z}
denote the space-time points at which the corresponding input/output is generated. Note that the
intersection of the future light cones of Alice and Charlie’s output points SX and SZ (blue region)
lies entirely within the causal future of Bob’s output point SY . Futher, Bob’s input point, B
does not lie in the causal past of either of Alice’s or Charlie’s input points, SA or SC . In such a
scenario, it is shown in [53] that even if the joint distribution of Alice’s and Charlie’s outcomes, PXZ
depends on Bob’s input B, relativistic causality can still hold as long as the marginal distributions
of individual parties, PX , PY , PZ do not depend on the inputs of the complementary set of parties.
This is because Alice and Charlie can only compute this distribution and verify any B-dependence
in the blue region (their joint future), which is entirely in the causal future of B.

relativistic causality demands in this situation. We show here that non-signalling causal boxes
impose the stronger no-signalling condition (4.15) working with the example of the same tripartite
scenario.
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Strong non-signalling in causal boxes

Consider a causal box with the classical inputs a ∈ A,b ∈ B and c ∈ C, and classical outputs
x ∈ X,y ∈ Y and z ∈ Z with corresponding space-time stamps (i.e., T is taken to be Minkowski
space) as in Figure 4.7. It is easy to see that such a causal box obeys the stronger non-signalling
conditions.

Let C be the cut upper-bounded by the single point, SX i.e., C = T ≤SX and the cut C simply
represents the past light cone of the point SX (including the point itself) in Figure 4.7. Similarly
let D = T ≤SZ in which case D simply represents the past light cone of the point SZ (including the
point itself) in Figure 4.7. Now, by definition of the causality function (Definition 2.2.2), χ(C) ⊂ C,
χ(D) ⊂ D and χ(C ∪D) = χ(C) ∪ χ(D). χ(C) ⊂ C and χ(D) ⊂ D imply that the outputs X and Z
can only depend on inputs produced in their corresponding causal pasts. χ(C ∪D) = χ(C) ∪ χ(D)
implies that the outputs X and Z together can be described entirely by inputs produced in the
union of their causal pasts. Since the input B does not lie in the causal past of either of these
points (and therefore not in the union), the joint distribution PXZ would not depend on B in this
case. Thus a tripartite causal box with classical inputs and outputs and corresponding space-time
labels as in Figure 4.7 obeys the strong non-signalling conditions, Equation (4.15).

It should be possible to model non-signalling systems compatible with the weaker definition
of [53] within the causal boxes framework by weakening the causality conditions. This could be
done by dropping the first condition, Condition (2.12a) of Definition 2.2.2 in favour of a weaker
condition. In our specific example of Figure 4.7, the weaker condition should model the following
fact: the outputs X and Z separately depend only on inputs in their corresponding causal pasts
but together, they can depend on inputs in the causal past of the earliest point, SXZ at which the
two outputs can be accessed simultaneously (this would be the earliest point in their joint causal
future, depicted as the blue region in Figure 4.7). Thus for this particular case, the condition
χ(C ∪ D) = χ(T ≤SXZ ) could be a substitute for Condition (2.12a) such that the corresponding
causal box can model weaker non-signalling systems. Here the point SXZ has the property that
C ⊂ T ≤SXZ and D ⊂ T ≤SXZ while C /⊂ T ≤S′ , D /⊂ T ≤S′ or both for any S′ < SXZ . It would
be interesting to see what the weaker causality condition would be in the general case. This
could allow causal boxes to model post-quantum cryptographic protocols analysed in [53] where
adversaries are restricted by relativistic causality alone.

Strong non-signalling in process matrices

It is easy to see that a tripartite non-signalling process matrix, Wtri (see Section 3.2.2 for the
definition of non-signalling process matrices) would produce correlations (obtained by plugging it
into the probability rule (3.5)) that satisfy the strong non-signalling conditions (4.15). To see this,
note that a general tripartite, non-signalling matrix can be written as Wtri = ρAIBICI ⊗ 1AOBOCO
(analogous to the bipartite non-signalling process matrixWAB of Section 3.2.3). Thus, for arbitrary
local maps with CJ representations (Section 3.1) MAIAO

x∣a , MBIBO
y∣b and MCICO

z∣c (where a ∈ A, b ∈ B
and c ∈ C are the particular setting choices and x ∈ X,y ∈ Y and z ∈ Z are the corresponding
outcomes observed) that the three parties could perform, the generalised Born rule (3.5) for this
case becomes,

PXY Z∣ABC(xyz∣abc) = tr [(MAIAO
x∣a ⊗MBIBO

y∣b ⊗MCICO
z∣c )ρAIBICI ] (4.16)

It can now be readily seen that marginalising the above joint probability distribution to obtain
a distribution over the outputs X and Z, by summing over all values y the output Y makes it
independent of the input B as well. This is because the b dependence on the right hand side of
Equation (4.16) drops out by using ∑

y∈Y
MBIBO
y∣b = 1BI (see Equation (3.2)). Thus process matrices

also satisfy the stronger non-signalling conditions (4.15). This should not come as a surprise since
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it was noted in Section 4.2.3 that process matrices in particular cannot model post-quantum, non-
signalling systems such as the PR box since the framework assumes local quantum operations.
The possibility of modelling PR boxes and more general non-signalling systems [53] in the process
matrix framework by replacing local quantum operations with more generalised local operations
is yet to be investigated.

4.2.5 Superposition of numbers of messages

The causal box framework models situations where different agents can exchange a superposition
of different number of messages in a superposition of orders which may be chosen dynamically
during run-time. This is achieved by modelling the state-space of wires as a symmetric Fock space
(Chapter 2) and including “space-time stamps” on every message. The process matrix framework
does not allow for superpositions of different numbers of messages to be exchanged between agents,
since input and output spaces of local laboratories are modelled as Hilbert spaces and not Fock
spaces. Thus the framework does not in particular allow for superpositions of sending a state that
is a superposition of sending “nothing” and “something” at the same time; such superpositions are
important in the physical implementation of controlled unitary operations [35,38] as noted in [18].

4.2.6 Composable relativistic quantum cryptography

Causal boxes are very suitable for modelling several kinds of multi-round cryptographic protocols
against a general class of adversaries (classical, quantum and non-signalling) [1]. By virtue of
being closed under composition, they can be used to model composable security which is a notion
of cryptographic security that allows protocols to be securely composed with each other [1,40,54].
In the process matrix framework on the other hand, a quantum sub-system enters an agent’s lab
only once. Many cryptographic protocols involve more than a single round of operations. In order
to model multi-round protocols in the process matrix formalism, for example where two agents
alternatively perform operations at different times on some states and exchange information, one
would have to model a single agent, Alice as n different agents one for each round of the protocol,
such that each agent acts only once on the states she receives. For protocols with larger number of
agents and many rounds, the process matrix approach could become quite ineffective as one would
need to keep track of many unnecessary inputs and outputs (corresponding to the additional
agents) in the corresponding process matrix and the matrix itself grows in size.

Further, the causal boxes framework models superpositions of different number of messages
as seen in Section 4.2.5. This in particular allows superpositions of sending “no message” (i.e.,
sending the vacuum state ∣Ω⟩) and sending “one message”. This would be required for modelling
quantum cryptographic protocols where a party may chose to send a message or not send any
message to another party depending (coherently) on the value of a control qubit.

Studying cryptographic applications of indefinite causal structures can provide an operational
method for understanding the properties of physical causal structures. This would involve inves-
tigating questions such as: Which causal structures provide an operational advantage over others
and in what kind of (cryptographic) tasks? What is the physical principle governing these causal
structures that make them more useful for certain tasks?

4.2.7 Quantum causal models and causal discovery

The process matrix framework has been used for quantum causal modelling [10] and in the first
quantum causal discovery algorithm [12]. As discussed in the introduction, in a quantum causal
model, one has a number of nodes represented by “quantum systems” and directed edges or
“causal mechanisms” connecting them. In addition, a quantum causal model must also provide
a description of how these systems and mechanisms change under intervention and how one can
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predict such changes conditioned on a given intervention [9–11]. In the process matrix framework,
the local laboratories can be viewed as the nodes and the channels appearing in the process matrix
which connect different labs can be seen as the mechanisms and a framework for quantum causal
modelling based on process matrices is presented in [10]. One can already get a flavour of this in
the examples of Section 3.2.3 which are taken from this work. Further, [8] shows that classical
causal discovery algorithms fail to satisfactorily explain quantum causal relations in the light of
Bell’s Theorem which creates the need for novel quantum causal discovery algorithms. Process
matrices have been used to build the first quantum causal discovery algorithm [12]. At this stage, it
is not completely clear how to use causal boxes in quantum causal modelling and causal discovery
since the framework has a very different structure. However, there seems to be no fundamental
limitation in the framework that does not allow its efficient use in such applications. In fact,
the quantum causal model [10] only explicitly describes causally separable processes and causal
discovery algorithm [12] can also only be applied to causally separable processes. Causal boxes
can model causally separable processes which are known to be physically implementable. Thus, it
should be possible to extend the methods of [10, 12] to the causal box framework. One can then
check if the framework is suitable for causal modelling and causal discovery of indefinite causal
structures such as the quantum switch. To the best of our knowledge, there is no known algorithm
for the causal discovery of indefinite causal structures.

4.2.8 Quantum complexity

The quantum switch and its generalisation to n operations (the n-switch) which implement oper-
ations in a controlled superpositions of orders are known to provide advantages over fixed orders
of operations in both query complexity [29] and communication complexity [55] scenarios.

As we noted in Section 1.4, any circuit representation of the map implemented by the quantum
switch would have at least one of the unitaries appearing twice (Figure 1.3). However, the quantum
switch (Figure 1.2) implements this map with just one query to each black-box unitary and hence
cannot be written as a quantum circuit. More generally, the n-switch implements a controlled
superposition between the n! permutations of n unitaries with one query to each unitary. Based
on this, there exists a computational task which the n-switch can deterministically solve in O(n)
queries while even in the optimal case, any quantum circuit model with fixed order of operations
would require O(n2) queries [29]. Further, for certain one-way communication tasks, using the
quantum switch to superpose the direction of communication10 can give an exponential advantage
in communication complexity over strategies involving a fixed direction of communication i.e.,
exponentially less amount of qubits need to be exchanged between A and B to accomplish the task.
Thus, in the presence on indefinite temporal order of operations (such as the quantum switch),
merely counting the number of gates appearing in the circuit representation of an overall map
will not provide a correct estimate of the complexity of an actual physical process implementing
that map. However, performing a measurement to find out which gates/channels were actually
queried/used would destroy the coherence of the process. One could instead add quantum counters
to each of the boxes that increment their value by 1 whenever the box acts on a non-vacuum state
as done in the causal box representation of the quantum switch (Lemma 4.1.1). The process matrix
framework in its original form [16] does not include the vacuum state and one could in principle
generalise the framework to include it and superpositions of the vacuum with other quantum
states, for example, by modelling the input and output spaces LI and LO of a lab L as Fock
spaces instead of Hilbert spaces. There may also be other physically implementable processes with
an indefinite temporal/causal order and the problem of characterising these and evaluating the

10A controlled superposition of A communicates to B and B communicates to A is not the same as two-way
communication between agents A and B. One can add counters at the output ports of A and B’s lab analogous to
the case of the quantum switch as a causal box (Lemma 4.1.1) to verify that the quantum channel between A and
B is used only once.
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corresponding complexities is in general an open problem. In principle, this question could be
investigated within both the causal boxes and process matrix frameworks, it may also be useful to
compare the two approaches to such problems and to analyse whether the frameworks give rise to
any new complexity classes.

4.2.9 Definitions of causality

Another point of comparison between the causal box and process matrix frameworks is in their
definitions of “causality”. In the process matrix framework, causality is defined at the level of
probability distributions where causal inequalities can be used to differentiate between causal and
non-causal distributions. This definition of causality is “classical” i.e., it is formulated entirely at
the level of classical settings and outcomes of agents. However, it is “non-classical” at the level
of space-time structure since it makes no reference to an underlying space-time. The causality
definition for causal boxes on one hand, appears more general since it makes no reference to
specific inputs or outputs to the causal box (which may be classical or quantum) but on the other
hand, appears less general because it appeals only to the fixed background space-time structure,
T over which the causality function (Definition 2.2.2) is defined.

4.3 A summary of open questions

From the comparison and general discussion of the previous sections, a number of open questions
are evident, and we summarise them here.

1. Characterising the set of physical causal structures: Process matrices were shown
to be a strict subset of two-time states in [17] which provided a physical interpretation for
all process matrices namely that they would arise naturally in a quantum world with post-
selection. However, neither causal boxes nor process matrices are a strict subset of the other.
Post-quantum systems arising in theories with fixed global ordering (Bell scenario), such as
the PR box can be modelled with the causal boxes framework but not within the process
matrix framework. While post-quantum systems arising in theories with no fixed global
ordering, such as those which violate causal inequalities can be described within the process
matrices framework but not within the causal boxes framework. Neither the former nor the
latter are known to have physical implementation. Further, all physical processes with known
physical implementations can be modelled within both frameworks. Exactly characterising
the set of processes in the intersection of the two frameworks and identifying the basic
property satisfied by all processes in this subset would provide a better understanding of the
properties of physical causal structures. Thus, comparing these two frameworks goes beyond
merely pin pointing the advantages and disadvantages of each framework since it would also
be an important step towards tackling some of the big open questions in quantum causality.

2. Causal modelling/discovery of indefinite causal structures: The presently known
quantum causal models [9, 10] and causal discovery methods [12, 13] can only be applied to
specific cases of definite causal orders and can not handle any kind of superpositions of orders.
Even these simple causal structures are fundamentally different in the quantum and classical
cases as implied by Bell’s theorem ( [8]). The existing models are already a great progress
for quantum causality because they provide a basic understanding of the notion of cause
that governs quantum systems. However, the question of how one can generalise quantum
causal models to superpositions of orders still remains open and it would be interesting to
investigate if causal boxes could be useful for this purpose.
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3. Modelling superpositions of space-time with causal boxes: As noted in Section 4.2.2,
the causal boxes framework with its partially ordered structure, T cannot model superpo-
sitions of space-time structures. It would be interesting to see how the framework could be
generalised, possibly by allowing for a causal box to be defined not over a fixed structure
T but over a set of such partially ordered sets, each corresponding to a possible space-time
geometry.

4. Systems limited by relativistic causality alone: Another area that could be explored
with causal boxes is to examine how the framework could be generalised to include post-
quantum systems constrained by special relativity alone [53]. This would have applications in
post-quantum cryptographic protocols where adversaries are limited by relativistic causality
alone [53]. As shown in Section 4.2.4, the causality conditions of the causal box framework are
stronger than what is required by relativistic causality alone [53] since space-like separated
parties in the framework always generate the “stronger” non-signalling correlations, which
are only sufficient (but not necessary) for relativistic causality. As noted in Section 4.2.4,
this would involve suitably relaxing Condition 2.12a or Definition 2.2.2.

5. Quantum complexity: As noted in Section 4.2.8, the question of evaluating the quantum
complexity of processes involving a superposition of arbitrary quantum circuits still remains
open. Given that merely counting the number of gates appearing in the circuit representation
or performing a measurement to see which gates are actually applied would not give correct
results, a novel method for achieving this is still lacking. Studying quantum complexity is
crucial for quantum computing and allows us to talk about operational advantages provided
by quantum processes over classical ones in solving certain information processing tasks (for
example, see [28,29]).

6. Modelling agents as quantum systems: In a theory involving quantum systems that
allows agents to measure and operate on them, there is no reason why agents themselves
should not be viewed as quantum systems that can be measured or operated upon by other
agents. In such Wigner’s friend [56] type scenarios, the probabilities assigned by different
agents for the same set of events need not always be compatible with a single global proba-
bility distribution [57]. The process matrix framework allows only for process matrices that
give valid global probability distributions according to the rule (3.5). It would be interesting
to study if either of these frameworks allow for agents to be modelled as quantum systems
themselves and if not, which features prevent them from doing so.
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[16] Oreshkov, O., Costa, F. & Brukner, Č. Quantum correlations with no causal order. Nature
Communications 3, 1092 (2012). URL https://www.nature.com/articles/ncomms2076.

[17] Silva, R. et al. Connecting processes with indefinite causal order and multi-time quan-
tum states. New Journal of Physics 19, 103022 (2017). URL https://doi.org/10.1088%
2F1367-2630%2Faa84fe.

[18] Portmann, C., Matt, C., Maurer, U., Renner, R. & Tackmann, B. Causal Boxes: Quantum
Information-Processing Systems Closed under Composition. IEEE Transactions on Informa-
tion Theory 63, 3277–3305 (2017). URL http://ieeexplore.ieee.org/document/7867830/.

[19] Zych, M., Costa, F., Pikovski, I. & Brukner, C. Bell’s Theorem for Temporal Order (2017).
URL http://arxiv.org/abs/1708.00248.

[20] Chiribella, G., D’Ariano, G. M., Perinotti, P. & Valiron, B. Quantum computations without
definite causal structure. Physical Review A 88, 022318 (2013). URL https://link.aps.org/
doi/10.1103/PhysRevA.88.022318.

[21] Procopio, L. M. et al. Experimental superposition of orders of quantum gates. Nature Com-
munications 6, 7913 (2015). URL https://www.nature.com/articles/ncomms8913.

[22] Rubino, G. et al. Experimental verification of an indefinite causal order. Science Advances 3
(2017). URL http://advances.sciencemag.org/content/3/3/e1602589.
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[29] Araújo, M., Costa, F. & Brukner, Č. Computational Advantage from Quantum-Controlled
Ordering of Gates. Physical Review Letters 113, 250402 (2014). URL https://link.aps.org/
doi/10.1103/PhysRevLett.113.250402.

[30] Chiribella, G., D’Ariano, G. M. & Perinotti, P. Theoretical framework for quantum networks.
Physical Review A 80, 022339 (2009). URL https://link.aps.org/doi/10.1103/PhysRevA.80.
022339.

[31] Aharonov, Y. & Vaidman, L. Complete description of a quantum system at a given time.
Journal of Physics A: Mathematical and General 24, 2315 (1991). URL https://iopscience.
iop.org/article/10.1088/0305-4470/24/10/018.

[32] Silva, R. et al. Pre- and postselected quantum states: Density matrices, tomography, and
kraus operators. Physical Review A 89, 012121 (2014). URL https://link.aps.org/doi/10.
1103/PhysRevA.89.012121.

[33] Gutoski, G. On a measure of distance for quantum strategies. Jounal of Mathematical Physics
53, 032202 (2012). URL https://aip.scitation.org/doi/10.1063/1.3693621.

[34] Hardy, L. The operator tensor formulation of quantum theory. Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences 370 (2012).
URL http://rsta.royalsocietypublishing.org/content/370/1971/3385.

[35] Friis, N., Dunjko, V., Dür, W. & Briegel, H. J. Implementing quantum control for unknown
subroutines. Physical Review A 89, 030303 (2014). URL https://link.aps.org/doi/10.1103/
PhysRevA.89.030303.

[36] Thompson, J., Modi, K., Vedral, V. & Gu, M. Quantum plug n’ play: modular computation
in the quantum regime. New Journal of Physics 20, 013004 (2018). URL https://doi.org/10.
1088%2F1367-2630%2Faa99b3.
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